Fast Multi-labelling for Stereo Matching
Abstract
We describe a new fast algorithm for multi-labelling problems. In general, a multi-labelling problem is NP-hard. Widely used algorithms like α-expansion can reach a suboptimal result in a time linear in the number of the labels. In this paper, we propose an algorithm which can obtain results of comparable quality polynomially faster. We use the Divide and Conquer paradigm to separate the complexities induced by the label set and the variable set, and deal with each of them respectively. Such a mechanism improves the solution speed without depleting the memory resource, hence it is particularly valuable for applications where the variable set and the label set are both huge. Another merit of the proposed method is that the trade-off between quality and time efficiency can be varied through using different parameters. The advantage of our method is validated by experiments.
Keywords
Tuning Range Stereo Match Stereo Pair Minimum Cycle Exterior EdgeReferences
- 1.Zabih, R., Veksler, O., Boykov, Y.: Fast approximate energy minimization via graph cuts. In: ICCV 1999, pp. 377–384 (1999)Google Scholar
- 2.Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23, 1222–1239 (2001)CrossRefGoogle Scholar
- 3.Komodakis, N., Tziritas, G., Paragios, N.: Performance vs computational efficiency for optimizing single and dynamic mrfs: Setting the state of the art with primal-dual strategies. Comput. Vis. Image Underst. 112, 14–29 (2008)CrossRefGoogle Scholar
- 4.Komodakis, N., Tziritas, G.: Approximate labeling via graph cuts based on linear programming. PAMI 29, 1436–1453 (2007)Google Scholar
- 5.Boros, E., Hammer, P.L.: Pseudo-boolean optimization. Discrete Applied Mathematics 123, 155–225 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
- 6.Carr, P., Hartley, R.: Solving multilabel graph cut problems using multilabel swap. In: DICTA, Melbourne, Australia (2009)Google Scholar
- 7.Carr, P., Hartley, R.: Minimizing energy functions on 4-connected lattices using elimination. In: ICCV, Kyoto, Japan (2009)Google Scholar
- 8.Kohli, P., Torr, P.: Dynamic graph cuts for efficient inference in markov random fields. PAMI 29, 2079–2088 (2007)Google Scholar
- 9.Goldberg, A.V., Rao, S.: Beyond the flow decomposition barrier. J. ACM 45, 783–797 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
- 10.Rother, C., Kolmogorov, V., Lempitsky, V., Szummer, M.: Optimizing binary mrfs via extended roof duality. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2007)Google Scholar
- 11.Gould, S., Amat, F., Koller, D.: Alphabet SOUP: A framework for approximate energy minimization. In: CVPR (2009)Google Scholar
- 12.Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., Rother, C.: A comparative study of energy minimization methods for markov random fields with smoothness-based priors. IEEE Trans. Pattern Anal. Mach. Intell. 30, 1068–1080 (2008)CrossRefGoogle Scholar
- 13.Scharstein, D., Szeliski, R., Zabih, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. SMBV 2001: Proceedings of the IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001), p. 131 (2001)Google Scholar
- 14.Wang, L., Jin, H., Yang, R.: Search space reduction for mrf stereo. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 576–588. Springer, Heidelberg (2008)CrossRefGoogle Scholar
- 15.Veksler, O.: Reducing search space for stereo correspondence with graph cuts. In: BMVC 2006, vol. II, p. 709 (2006)Google Scholar
- 16.Hirschmuller, H., Scharstein, D.: Evaluation of cost functions for stereo matching. In: CVPR 2007 (2007)Google Scholar
- 17.Scharstein, D., Pal, C.: Learning conditional random fields for stereo. In: CVPR 2007 (2007)Google Scholar