Efficient Computation of Scale-Space Features for Deformable Shape Correspondences

  • Tingbo Hou
  • Hong Qin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6313)


With the rapid development of fast data acquisition techniques, 3D scans that record the geometric and photometric information of deformable objects are routinely acquired nowadays. To track surfaces in temporal domain or stitch partially-overlapping scans to form a complete model in spatial domain, robust and efficient feature detection for deformable shape correspondences, as an enabling method, becomes fundamentally critical with pressing needs. In this paper, we propose an efficient method to extract local features in scale spaces of both texture and geometry for deformable shape correspondences. We first build a hierarchical scale space on surface geometry based on geodesic metric, and the pyramid representation of surface geometry naturally engenders the rapid computation of scale-space features. Analogous to the SIFT, our features are found as local extrema in the scale space. We then propose a new feature descriptor for deformable surfaces, which is a gradient histogram within a local region computed by a local parameterization. Both the detector and the descriptor are invariant to isometric deformation, which makes our method a powerful tool for deformable shape correspondences. The performance of the proposed method is evaluated by feature matching on a sequence of deforming surfaces with ground truth correspondences.


Scale Space Scale Invariant Feature Transformation Correct Match Deformable Surface Irregular Mesh 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material (12.3 mb)
Electronic Supplementary Material (12,558 KB)


  1. 1.
    Lee, C.H., Varshney, A., Jacobs, D.W.: Mesh saliency. ACM Trans. Graph. (TOG) 24, 659–666 (2005)CrossRefGoogle Scholar
  2. 2.
    Wu, C., Clipp, B., Li, X., Frahm, J.M., Pollefeys, M.: 3d model matching with viewpoint-invariant patches (vip). In: CVPR (2008)Google Scholar
  3. 3.
    Zaharescu, A., Boyer, E., Varanasi, K., Horaud, R.: Surface feature detection and description with applications to mesh matching. In: CVPR (2009)Google Scholar
  4. 4.
    Zou, G., Hua, J., Dong, M., Qin, H.: Surface matching with salient keypoints in geodesic scale space. Computer Animation and Virtual Worlds 19, 399–410 (2008)CrossRefGoogle Scholar
  5. 5.
    Elad, A., Kimmel, R.: On bending invariant signatures for surfaces. TPAMI 25, 1285–1295 (2003)Google Scholar
  6. 6.
    Novatnack, J., Nishino, K.: Scale-dependent 3d geometric features. In: ICCV (2007)Google Scholar
  7. 7.
    Novatnack, J., Nishino, K.: Scale-dependent/invariant local 3d shape descriptors for fully automatic registration of multiple sets of range images. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 440–453. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Hua, J., Lai, Z., Dong, M., Gu, X., Qin, H.: Geodesic distance-weighted shape vector image diffusion. TVCG 14, 1643–1650 (2008)Google Scholar
  9. 9.
    Reuter, M., Wolter, F.E., Peinecke, N.: Laplace-beltrami spectra as “shape-dna” of surfaces and solids. Computer-Aided Design (CAD) 38, 342–366 (2006)CrossRefGoogle Scholar
  10. 10.
    Rustamov, R.: Laplace–beltrami eigenfunctions for deformation invariant shape representation. In: Symposium of Geometry Processing, SGP (2007Google Scholar
  11. 11.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. IJCV 60, 91–110 (2004)CrossRefGoogle Scholar
  12. 12.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. TPAMI 27, 1615–1630 (2005)Google Scholar
  13. 13.
    Ke, Y., Sukthankar, R.: Pca-sift: A more distinctive representation for local image descriptors. In: CVPR (2004)Google Scholar
  14. 14.
    Tola, E., Lepetit, V., Fua, P.: A fast local descriptor for dense matching. In: CVPR (2008)Google Scholar
  15. 15.
    Pauly, M., Keiser, R., Gross, M.: Multi-scale feature extraction on point-sampled surfaces. Comput. Graph. Forum (CGF) 22, 281–289 (2003)CrossRefGoogle Scholar
  16. 16.
    Zou, G., Hua, J., Lai, Z., Gu, X., Dong, M.: Intrinsic geometric scale space by shape diffusion. TVCG 15, 1193–1200 (2009)Google Scholar
  17. 17.
    Johnson, A.: Spin-images: A representation for 3-d surface matching. PhD thesis, Carnegie Mellon University (1997)Google Scholar
  18. 18.
    Frome, A., Huber, D., Kolluri, R., Bülow, T., Malik, J.: Recognizing objects in range data using regional point descriptors. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3023, pp. 224–237. Springer, Heidelberg (2004)Google Scholar
  19. 19.
    Castellani, U., Cristani, M., Fantoni, S., Murino, V.: Sparse points matching by combining 3d mesh saliency with statistical descriptors. In: Eurographics (2008)Google Scholar
  20. 20.
    Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. In: Proceedings of National Academy of Science USA (PNAS), pp. 8431–8435 (1998)Google Scholar
  21. 21.
    Hoppe, H.: Progressive meshes. In: SIGGRAPH, pp. 99–108 (1996)Google Scholar
  22. 22.
    Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: SIGGRAPH, pp. 209–216 (1997)Google Scholar
  23. 23.
    Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. VisMath (2002)Google Scholar
  24. 24.
    Meyer, T.H., Eriksson, M., Maggio, R.C.: Gradient estimation from irregularly spaced data sets. Mathematical Geology 23, 693–717 (2004)Google Scholar
  25. 25.
    Shapira, L., Shamir, A.: Local geodesic parametrization: An ants perspective. In: Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration, pp. 127–137. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. 26.
    Wang, S., Gu, X., Qin, H.: Automatic non-rigid registration of 3d dynamic data for facial expression synthesis and transfer. In: CVPR (2008)Google Scholar
  27. 27.
    Zhang, L., Snavely, N., Curless, B., Seitz, S.: Spacetime faces: High-resolution capture for modeling and animation. In: SIGGRAPH (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Tingbo Hou
    • 1
  • Hong Qin
    • 1
  1. 1.Department of Computer ScienceStony Brook UniversityStony BrookUSA

Personalised recommendations