3D Reconstruction of a Moving Point from a Series of 2D Projections

  • Hyun Soo Park
  • Takaaki Shiratori
  • Iain Matthews
  • Yaser Sheikh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6313)


This paper presents a linear solution for reconstructing the 3D trajectory of a moving point from its correspondence in a collection of 2D perspective images, given the 3D spatial pose and time of capture of the cameras that produced each image. Triangulation-based solutions do not apply, as multiple views of the point may not exist at each instant in time. A geometric analysis of the problem is presented and a criterion, called reconstructibility, is defined to precisely characterize the cases when reconstruction is possible, and how accurate it can be. We apply the linear reconstruction algorithm to reconstruct the time evolving 3D structure of several real-world scenes, given a collection of non-coincidental 2D images.

Supplementary material (0 kb)
Electronic Supplementary Material (1 KB) (14.5 mb)
Electronic Supplementary Material (14,886 KB)


  1. 1.
    Shashua, A., Wolf, L.: Homography tensors: On algebraic entities that represent three views of static or moving planar points. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 507–521. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Hartley, R., Vidal, R.: Perspective nonrigid shape and motion recovery. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 276–289. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  4. 4.
    Longuet-Higgins, H.: A computer algorithm for reconstructing a scene from two projections. Nature (1981)Google Scholar
  5. 5.
    Faugeras, O., Luong, Q.T.: The geometry of multiple images. MIT Press, Cambridge (2001)zbMATHGoogle Scholar
  6. 6.
    Ma, Y., Soatto, S., Kosecka, J., Sastry, S.S.: An invitation to 3-D vision: From images to Geometric Models. Springer, Heidelberg (2001)Google Scholar
  7. 7.
    Avidan, S., Shashua, A.: Trajectory triangulation: 3D reconstruction of moving points from a monocular image sequence. TPAMI 22, 348–357 (2000)Google Scholar
  8. 8.
    Kaminski, J.Y., Teicher, M.: A general framework for trajectory triangulation. J. Math. Imaging Vis. 21, 27–41 (2004)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Wolf, L., Shashua, A.: On projection matrices \(\mathcal{P}^k \rightarrow \mathcal{P}^2, k =3, \cdot\cdot\cdot\), 6, and their applications in computer vision. In: ICCV (2002)Google Scholar
  10. 10.
    Bregler, C., Hertzmann, A., Biermann, H.: Recovering non-rigid 3D shape from image streams. In: CVPR (2000)Google Scholar
  11. 11.
    Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography: a factorization method. IJCV 9, 137–154 (1992)CrossRefGoogle Scholar
  12. 12.
    Xiao, J., Kanade, T.: Non-rigid shape and motion recovery: Degenerate deformations. In: CVPR (2004)Google Scholar
  13. 13.
    Bue, A.D.: A factorization approach to structure from motion with shape priors. In: CVPR (2008)Google Scholar
  14. 14.
    Bartoli, A., Gay-Bellile, V., Castellani, U., Peyras, J., Olsen, S., Sayd, P.: Coarse-to-fine low-rank structure-from-motion. In: CVPR (2008)Google Scholar
  15. 15.
    Torresani, L., Hertzmann, A., Bregler, C.: Nonrigid structure-from-motion: Estimating shape and motion with hierarchical priors. TPAMI 30, 878–892 (2008)Google Scholar
  16. 16.
    Paladini, M., Del Bue, A., Stošić, M., Dodig, M., Xavier, J., Agapito, L.: Factorization for non-rigid and articulated structure using metric projections. In: CVPR (2009)Google Scholar
  17. 17.
    Akhter, I., Sheikh, Y., Khan, S., Kanade, T.: Nonrigid structure from motion in trajectory space. In: NIPS (2008)Google Scholar
  18. 18.
    Vidal, R., Abretske, D.: Nonrigid shape and motion from multiple perspective views. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 205–218. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Akhter, I., Sheikh, Y., Khan, S.: In defense of orthonormality constraints for nonrigid structure from motion. In: CVPR (2009)Google Scholar
  20. 20.
    Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: Exploring photo collections in 3D. SIGGRAPH 25, 835–845 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Hyun Soo Park
    • 1
  • Takaaki Shiratori
    • 1
    • 2
  • Iain Matthews
    • 2
  • Yaser Sheikh
    • 1
  1. 1.Carnegie Mellon UniversityPittsburghUSA
  2. 2.Disney Research, PittsburghPittsburghUSA

Personalised recommendations