Analytical Forward Projection for Axial Non-central Dioptric and Catadioptric Cameras

  • Amit Agrawal
  • Yuichi Taguchi
  • Srikumar Ramalingam
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6313)


We present a technique for modeling non-central catadioptric cameras consisting of a perspective camera and a rotationally symmetric conic reflector. While previous approaches use a central approximation and/or iterative methods for forward projection, we present an analytical solution. This allows computation of the optical path from a given 3D point to the given viewpoint by solving a 6th degree forward projection equation for general conic mirrors. For a spherical mirror, the forward projection reduces to a 4th degree equation, resulting in a closed form solution. We also derive the forward projection equation for imaging through a refractive sphere (non-central dioptric camera) and show that it is a 10th degree equation. While central catadioptric cameras lead to conic epipolar curves, we show the existence of a quartic epipolar curve for catadioptric systems using a spherical mirror. The analytical forward projection leads to accurate and fast 3D reconstruction via bundle adjustment. Simulations and real results on single image sparse 3D reconstruction are presented. We demonstrate ~ 100 times speed up using the analytical solution over iterative forward projection for 3D reconstruction using spherical mirrors.


Bundle Adjustment Epipolar Geometry Spherical Mirror Reprojection Error Scene Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

978-3-642-15558-1_10_MOESM1_ESM.m (6 kb)
Electronic Supplementary Material (6 KB)
978-3-642-15558-1_10_MOESM2_ESM.m (3 kb)
Electronic Supplementary Material (3 KB)
978-3-642-15558-1_10_MOESM3_ESM.m (5 kb)
Electronic Supplementary Material (5 KB)


  1. 1.
    Baker, S., Nayar, S.: A theory of single-viewpoint catadioptric image formation. IJCV 35, 175–196 (1999)CrossRefGoogle Scholar
  2. 2.
    Micusik, B., Pajdla, T.: Autocalibration and 3D reconstruction with non-central catadioptric cameras. In: CVPR, pp. 58–65 (2004)Google Scholar
  3. 3.
    Svoboda, T., Pajdla, T.: Epipolar geometry for central catadioptric cameras. In: IJCV, vol. 49, pp. 23–37 (2002)Google Scholar
  4. 4.
    Svoboda, T., Pajdla, T., Hlavac, V.: Epipolar geometry for panoramic cameras. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 218–231. Springer, Heidelberg (1998)Google Scholar
  5. 5.
    Geyer, C., Daniilidis, K.: Properties of the catadioptric fundamental matrix. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 140–154. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Geyer, C., Daniilidis, K.: A unifying theory of central panoramic systems and practical implications. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 159–179. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Sturm, P., Barreto, J.P.: General imaging geometry for central catadioptric cameras. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 609–622. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Pless, R.: Using many cameras as one. In: CVPR, pp. 587–594 (2003)Google Scholar
  9. 9.
    Rademacher, P., Bishop, G.: Multiple-center-of-projection images. In: SIGGRAPH, pp. 199–206 (1998)Google Scholar
  10. 10.
    Yagi, Y., Kawato, S.: Panoramic scene analysis with conic projection. In: Proc. IEEE Int’l Workshop on Intelligent Robots and Systems, pp. 181–187 (1990)Google Scholar
  11. 11.
    Spacek, L.: Coaxial omnidirectional stereopsis. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 354–365. Springer, Heidelberg (2004)Google Scholar
  12. 12.
    Gupta, R., Hartley, R.: Linear pushbroom cameras. PAMI 19, 963–975 (1997)Google Scholar
  13. 13.
    Pajdla, T.: Stereo with oblique cameras. IJCV 47, 161–170 (2002)zbMATHCrossRefGoogle Scholar
  14. 14.
    Geyer, C., Daniilidis, K.: Paracatadioptric camera calibration. PAMI 24, 687–695 (2002)Google Scholar
  15. 15.
    Yu, J., McMillan, L.: General linear cameras. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3022, pp. 14–27. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Zhang, Z.: On the epipolar geometry between two images with lens distortion. In: ICPR, vol. 1, pp. 407–411 (1996)Google Scholar
  17. 17.
    Micusik, B., Pajdla, T.: Structure from motion with wide circular field of view cameras. PAMI 28, 1135–1149 (2006)Google Scholar
  18. 18.
    Gonçalvez, N., Nogueira, A.C.: Projection through quadric mirrors made faster. In: OMNIVIS (2009)Google Scholar
  19. 19.
    Vandeportaele, B.: Contributions à la vision omnidirectionnelle: Étude, Conception et Étalonnage de capteurs pour lacquisition dimages et la modélisation 3D. PhD thesis, Institut National Polytechnique de Toulouse, France, in french (2006)Google Scholar
  20. 20.
    Hong, J., Tan, X., Pinette, B., Weiss, R., Riseman, E.: Image-based homing. In: ICRA, pp. 620–625 (1991)Google Scholar
  21. 21.
    Lanman, D., Crispell, D., Wachs, M., Taubin, G.: Spherical catadioptric arrays: Construction, multi-view geometry, and calibration. In: 3DPVT, pp. 81–88 (2006)Google Scholar
  22. 22.
    Ding, Y., Yu, J., Sturm, P.: Multi-perspective stereo matching and volumetric reconstruction. In: ICCV (2009)Google Scholar
  23. 23.
    Kojima, Y., Sagawa, R., Echigo, T., Yagi, Y.: Calibration and performance evaluation of omnidirectional sensor with compound spherical mirrors. In: OMNIVIS (2005)Google Scholar
  24. 24.
    Glaeser, G.: Reflections on spheres and cylinders of revolution. J. Geometry and Graphics 3, 121–139 (1999)zbMATHMathSciNetGoogle Scholar
  25. 25.
    Garg, K., Nayar, S.K.: Vision and rain. IJCV 75, 3–27 (2007)CrossRefGoogle Scholar
  26. 26.
    Swaminathan, R., Grossberg, M., Nayar, S.: Non-single viewpoint catadioptric cameras: Geometry and analysis. IJCV 66, 211–229 (2006)CrossRefGoogle Scholar
  27. 27.
    Glassner, A.S. (ed.): An introduction to ray tracing. Academic Press Ltd, London (1989)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Amit Agrawal
    • 1
  • Yuichi Taguchi
    • 1
  • Srikumar Ramalingam
    • 1
  1. 1.Mitsubishi Electric Research Labs (MERL)CambridgeUSA

Personalised recommendations