Learning Shape Segmentation Using Constrained Spectral Clustering and Probabilistic Label Transfer

  • Avinash Sharma
  • Etienne von Lavante
  • Radu Horaud
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6315)


We propose a spectral learning approach to shape segmentation. The method is composed of a constrained spectral clustering algorithm that is used to supervise the segmentation of a shape from a training data set, followed by a probabilistic label transfer algorithm that is used to match two shapes and to transfer cluster labels from a training-shape to a test-shape. The novelty resides both in the use of the Laplacian embedding to propagate must-link and cannot-link constraints, and in the segmentation algorithm which is based on a learn, align, transfer, and classify paradigm. We compare the results obtained with our method with other constrained spectral clustering methods and we assess its performance based on ground-truth data.


Spectral Cluster Cluster Label Pairwise Constraint Spectral Cluster Algorithm Weighted Adjacency Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

978-3-642-15555-0_54_MOESM1_ESM.wmv (3 mb)
Electronic Supplementary Material (3,100 KB)


  1. 1.
    von Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing 17, 395–416 (2007)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15, 1373–1396 (2003)zbMATHCrossRefGoogle Scholar
  3. 3.
    Spielman, D.A., Teng, S.H.: Spectral partitioning works: Planar graphs and finite element meshes. Linear Algebra and its Applications 421, 284–305 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Mateus, D., Horaud, R., Knossow, D., Cuzzolin, F., Boyer, E.: Articulated shape matching using Laplacian eigenfunctions and unsupervised point registration. In: CVPR (2008)Google Scholar
  5. 5.
    Horaud, R., Forbes, F., Yguel, M., Dewaele, G., Zhang, J.: Rigid and articulated point registration with expectation conditional maximization. IEEE PAMI (2010) (in press)Google Scholar
  6. 6.
    Bronstein, A., et al.: Shrec 2010: Robust correspondence benchmark. In: Eurographics Workshop on 3D Object Retrieval (2010)Google Scholar
  7. 7.
    Bronstein, A., Bronstein, M., Kimmel, R., Mahmoudi, M., Sapiro, G.: A Gromov-Hausdorff framework with diffusion geometry for topologically robust non-rigid shape alignment. IJCV 89, 266–286 (2010)CrossRefGoogle Scholar
  8. 8.
    Ovsjanikov, M., Sun, J., Guibas, L.: Global intrinsic symmetries of shapes. Computer Graphics Forum 27, 1341–1348 (2008)CrossRefGoogle Scholar
  9. 9.
    Chen, X., Golovinskiy, A., Funkhouser, T.: A benchmark for 3d mesh segmentation. In: ACM Transactions on Graphics (SIGGRAPH) (2009)Google Scholar
  10. 10.
    Reuter, M.: Hierarchical shape segmentation and registration via topological features of laplace-beltrami eigenfunctions. IJCV 89, 287–308 (2010)CrossRefGoogle Scholar
  11. 11.
    Liu, R., Zhang, H.: Mesh segmentation via spectral embedding and contour analysis. Computer Graphics Forum 26, 385–394 (2007)CrossRefGoogle Scholar
  12. 12.
    Szummer, M., Jaakkola, T.: Partially labeled classification with Markov random walks. In: NIPS (2002)Google Scholar
  13. 13.
    Coifman, R., Lafon, S.: Diffusion maps. Applied and Computational Harmonic Analysis 21, 5–30 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Qiu, H., Hancock, E.R.: Clustering and embedding using commute times. IEEE PAMI 29, 1873–1890 (2007)Google Scholar
  15. 15.
    Belkin, M., Niyogi, P.: Semi-supervised learning on Riemannian manifold. Machine Learning 56 (2004)Google Scholar
  16. 16.
    Wagstaff, K., Cardie, C., Rogers, S., Schrödl, S.: Constrained k-means clustering with background knowledge. In: ICML (2001)Google Scholar
  17. 17.
    Xing, E.P., Ng, A.Y., Jordan, M.I., Russell, S.J.: Distance metric learning with application to clustering with side-information. In: NIPS (2002)Google Scholar
  18. 18.
    Bilenko, M., Basu, S., Mooney, R.J.: Integrating constraints and metric learning in semi-supervised clustering. In: ICML (2004)Google Scholar
  19. 19.
    Li, Z., Liu, J.: Constrained clustering by spectral kernel learning. In: ICCV (2009)Google Scholar
  20. 20.
    Kulis, B., Basu, S., Dhillon, I., Mooney, R.: Semi-supervised graph clustering: a kernel approach. Machine Learning 74, 1–22 (2009)CrossRefGoogle Scholar
  21. 21.
    Kamvar, S.D., Klein, D., Manning, C.D.: Spectral learning. In: IJCAI (2003)Google Scholar
  22. 22.
    Yu, S.X., Shi, J.: Segmentation given partial grouping constraints. IEEE PAMI 26, 173–183 (2004)Google Scholar
  23. 23.
    Fouss, F., Pirotte, A., Renders, J., Saerens, M.: Random-walk computation of similarities between nodes of a graph, with application to collaborative recommendation. IEEE KDE 19, 355–369 (2007)Google Scholar
  24. 24.
    Grinstead, C.M., Snell, J.L.: Introduction to Probability. American Mathematical Society, Providence (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Avinash Sharma
    • 1
  • Etienne von Lavante
    • 1
  • Radu Horaud
    • 1
  1. 1.INRIA Grenoble Rhône-AlpesMontbonnotFrance

Personalised recommendations