Reweighted Random Walks for Graph Matching

  • Minsu Cho
  • Jungmin Lee
  • Kyoung Mu Lee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6315)

Abstract

Graph matching is an essential problem in computer vision and machine learning. In this paper, we introduce a random walk view on the problem and propose a robust graph matching algorithm against outliers and deformation. Matching between two graphs is formulated as node selection on an association graph whose nodes represent candidate correspondences between the two graphs. The solution is obtained by simulating random walks with reweighting jumps enforcing the matching constraints on the association graph. Our algorithm achieves noise-robust graph matching by iteratively updating and exploiting the confidences of candidate correspondences. In a practical sense, our work is of particular importance since the real-world matching problem is made difficult by the presence of noise and outliers. Extensive and comparative experiments demonstrate that it outperforms the state-of-the-art graph matching algorithms especially in the presence of outliers and deformation.

Keywords

Random Walk Edge Density Graph Match Objective Score Spectral Match 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. In: IJPRAI (2004)Google Scholar
  2. 2.
    Berg, A.C., Berg, T.L., Malik, J.: Shape matching and object recognition using low distortion correspondences. In: CVPR (2005)Google Scholar
  3. 3.
    Leordeanu, M., Hebert, M.: A spectral technique for correspondence problems using pairwise constraints. In: ICCV (2005)Google Scholar
  4. 4.
    Cour, T., Srinivasan, P., Shi, J.: Balanced graph matching. In: NIPS (2006)Google Scholar
  5. 5.
    Torresani, L., Kolmogorov, V., Rother, C.: Feature correspondence via graph matching: Models and global optimization. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 596–609. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Zass, R., Shashua, A.: Probabilistic graph and hypergraph matching. In: CVPR (2008)Google Scholar
  7. 7.
    Duchenne, O., Bach, F., Kweon, I., Ponce, J.: A tensor-based algorithm for high-order graph matching. In: CVPR (2009)Google Scholar
  8. 8.
    Leordeanu, M., Herbert, M.: An integer projected fixed point method for graph matching and map inference. In: NIPS (2009)Google Scholar
  9. 9.
    Kleinberg, J.: Authoritative sources in a hyperlinked environment. Journal of the ACM (1999)Google Scholar
  10. 10.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web. Technical Report, Stanford University (1998)Google Scholar
  11. 11.
    Haveliwala, T.H.: Topic-sensitive pagerank. In: WWW (2002)Google Scholar
  12. 12.
    Maciel, J., Costeira, J.P.: A global solution to sparse correspondence problems. PAMI (2003)Google Scholar
  13. 13.
    Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching. PAMI (1996)Google Scholar
  14. 14.
    van Wyk, B.J., van Wyk, M.A.: A pocs-based graph matching algorithm. PAMI (2004)Google Scholar
  15. 15.
    Lee, J., Cho, M., Lee, K.M.: Graph matching algorithm using data-driven markov chain monte carlo sampling. In: ICPR (2010)Google Scholar
  16. 16.
    Gori, M., Maggini, M., Sarti, L.: Exact and approximate graph matching using random walks. PAMI (2005)Google Scholar
  17. 17.
    Robles-Kelly, A., Hancock, E.R.: String edit distance, random walks and graph matching. In: IJPRAI (2004)Google Scholar
  18. 18.
    Sinkhorn, R.: A relationship between arbitrary positive matrices and doubly stochastic matrices. Ann. Math. Statistics (1964)Google Scholar
  19. 19.
    Langville, A.N., Meyer, C.D.: Deeper inside pagerank. Internet Mathematics (2003)Google Scholar
  20. 20.
    Seneta, E.: Non negative matrices and markov chains. Springer, Heidelberg (2006)MATHGoogle Scholar
  21. 21.
    Munkres, J.: Algorithms for the assignment and transportation problems. SIAM, Philadelphia (1957)Google Scholar
  22. 22.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: BMVC (2002)Google Scholar
  23. 23.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: ICCV, pp. 1150–1157 (1999)Google Scholar
  24. 24.
    Cho, M., Lee, J., Lee, K.M.: Feature correspondence and deformable object matching via agglomerative correspondence clustering. In: ICCV (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Minsu Cho
    • 1
  • Jungmin Lee
    • 1
  • Kyoung Mu Lee
    • 1
  1. 1.Department of EECSASRI, Seoul National UniversitySeoulKorea

Personalised recommendations