Advertisement

P2Π: A Minimal Solution for Registration of 3D Points to 3D Planes

  • Srikumar Ramalingam
  • Yuichi Taguchi
  • Tim K. Marks
  • Oncel Tuzel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6315)

Abstract

This paper presents a class of minimal solutions for the 3D-to-3D registration problem in which the sensor data are 3D points and the corresponding object data are 3D planes. In order to compute the 6 degrees-of-freedom transformation between the sensor and the object, we need at least six points on three or more planes. We systematically investigate and develop pose estimation algorithms for several configurations, including all minimal configurations, that arise from the distribution of points on planes. The degenerate configurations are also identified. We point out that many existing and unsolved 2D-to-3D and 3D-to-3D pose estimation algorithms involving points, lines, and planes can be transformed into the problem of registering points to planes. In addition to simulations, we also demonstrate the algorithm’s effectiveness in two real-world applications: registration of a robotic arm with an object using a contact sensor, and registration of 3D point clouds that were obtained using multi-view reconstruction of planar city models.

Supplementary material

978-3-642-15555-0_32_MOESM1_ESM.zip (3 kb)
Electronic Supplementary Material (10 KB)
978-3-642-15555-0_32_MOESM2_ESM.zip (1 kb)
Electronic Supplementary Material (3 KB)
978-3-642-15555-0_32_MOESM3_ESM.zip (0 kb)
Electronic Supplementary Material (1 KB)
978-3-642-15555-0_32_MOESM4_ESM.zip (0 kb)
Electronic Supplementary Material (1 KB)
978-3-642-15555-0_32_MOESM5_ESM.pdf (180 kb)
Electronic Supplementary Material (180 KB)
978-3-642-15555-0_32_MOESM6_ESM.zip (0 kb)
Electronic Supplementary Material (1 KB)

References

  1. 1.
    Olsson, C., Kahl, F., Oskarsson, M.: The registration problem revisited: Optimal solutions from points, lines and planes. In: CVPR, vol. 1, pp. 1206–1213 (2006)Google Scholar
  2. 2.
    Besl, P., McKay, N.: A method for registration of 3D shapes. PAMI (1992)Google Scholar
  3. 3.
    Fitzgibbon, A.: Robust registration of 2d and 3d point sets. In: Image and Vision Computing (2003)Google Scholar
  4. 4.
    Chen, H.: Pose determination from line-to-plane correspondences: Existence condition and closed-form solutions. PAMI 13, 530–541 (1991)Google Scholar
  5. 5.
    Grimson, W., Lozano-Prez, T.: Model-based recognition and localization from sparse range or tactile data. MIT AI Lab, A.I. Memo 738 (1983)Google Scholar
  6. 6.
    Horn, B.: Closed-form solution of absolute orientation using unit quaternions. Journal of the Optical Society A 4, 629–642 (1987)CrossRefGoogle Scholar
  7. 7.
    Li, H., Hartley, R.: The 3D-3D registration problem revisited. In: ICCV, pp. 1–8 (2007)Google Scholar
  8. 8.
    Enqvist, O., Josephson, K., Kahl, F.: Optimal correspondences from pairwise constraints. In: ICCV (2009)Google Scholar
  9. 9.
    Tu, P., Saxena, T., Hartley, R.: Recognizing objects using color-annotated adjacency graphs. In: Forsyth, D., Mundy, J.L., Di Gesú, V., Cipolla, R. (eds.) Shape, Contour, and Grouping 1999. LNCS, vol. 1681, p. 246. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Chen, Y., Medioni, G.: Object modeling by registration of multiple range images. In: ICRA, vol. 3, pp. 2724–2729 (1991)Google Scholar
  11. 11.
    Kukelova, Z., Pajdla, T.: A minimal solution to the autocalibration of radial distortion. In: CVPR (2007)Google Scholar
  12. 12.
    Gao, X., Hou, X., Tang, J., Cheng, H.: Complete solution classification for the perspective-three-point problem. PAMI 25, 930–943 (2003)Google Scholar
  13. 13.
    Stewenius, H., Nister, D., Kahl, F., Schaffalitzky, F.: A minimal solution for relative pose with unknown focal length. In: CVPR (2005)Google Scholar
  14. 14.
    Stewenius, H., Nister, D., Oskarsson, M., Astrom, K.: Solutions to minimal generalized relative pose problems. In: OMNIVIS (2005)Google Scholar
  15. 15.
    Geyer, C., Stewenius, H.: A nine-point algorithm for estimating para-catadioptric fundamental matrices. In: CVPR (2007)Google Scholar
  16. 16.
    Li, H., Hartley, R.: A non-iterative method for correcting lens distortion from nine-point correspondenses. In: OMNIVIS (2005)Google Scholar
  17. 17.
    Fischler, M., Bolles, R.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24, 381–395 (1981)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Dhome, M., Richetin, M., Lapresté, J.T., Rives, G.: Determination of the attitude of 3-D objects from a single perspective view. PAMI 11, 1265–1278 (1989)Google Scholar
  19. 19.
    Kukelova, Z., Bujnak, M., Pajdla, T.: Automatic generator of minimal problem solvers. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 302–315. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Nistér, D.: A minimal solution to the generalized 3-point pose problem. In: CVPR (2004)Google Scholar
  21. 21.
    Haralick, R., Lee, C., Ottenberg, K., Nolle, M.: Review and analysis of solutions of the three point perspective pose estimation problem. IJCV (1994)Google Scholar
  22. 22.
    Furukawa, Y., Ponce, J.: Accurate, dense, and robust multi-view stereopsis. PAMI (2009)Google Scholar
  23. 23.
    Furukawa, Y., Ponce, J.: Patch-based multi-view stereo software (2000), http://grail.cs.washington.edu/software/pmvs
  24. 24.
    Ramalingam, S., Lodha, S.: Adaptive enhancement of 3d scenes using hierarchical registration of texture-mapped 3d models. In: 3DIM (2003)Google Scholar
  25. 25.
    Rusinkiewicz, S., Levoy, M.: Efficient variants of the icp algorithm. In: 3DIM (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Srikumar Ramalingam
    • 1
  • Yuichi Taguchi
    • 1
  • Tim K. Marks
    • 1
  • Oncel Tuzel
    • 1
  1. 1.Mitsubishi Electric Research Laboratories (MERL)CambridgeUSA

Personalised recommendations