Advertisement

Membrane Nonrigid Image Registration

  • Geoffrey Oxholm
  • Ko Nishino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6312)

Abstract

We introduce a novel nonrigid 2D image registration method that establishes dense and accurate correspondences across images without the need of any manual intervention. Our key insight is to model the image as a membrane, i.e., a thin 3D surface, and to constrain its deformation based on its geometric properties. To do so, we derive a novel Bayesian formulation. We impose priors on the moving membrane which act to preserve its shape as it deforms to meet the target.We derive these as curvature weighted first and second order derivatives that correspond to the changes in stretching and bending potential energies of the membrane and estimate the registration as the maximum a posteriori. Experimental results on real data demonstrate the effectiveness of our method, in particular, its robustness to local minima and its ability to establish accurate correspondences across the entire image. The results clearly show that our method overcomes the shortcomings of previous intensity-based and feature-based approaches with conventional uniform smoothing or diffeomorphic constraints that suffer from large errors in textureless regions and in areas in-between specified features.

References

  1. 1.
    Irani, M., Rousso, B., Peleg, S.: Recovery of Ego-Motion Using Image Stabilization. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 454–460 (1994)Google Scholar
  2. 2.
    Dedeoglu, G., Kanade, T., Baker, S.: The Asymmetry of Image Registration and its Application to Face Tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 807–823 (2007)CrossRefGoogle Scholar
  3. 3.
    Weese, J., Penney, G., Desmedt, P., Buzug, T.M., Hill, D., Hawkes, D.: Voxel-Based 2-D/3-D Registration of Fluoroscopy Images and CT Scans for Image-Guided Surgery. IEEE Trans. on Info. Technology in Biomedicine 1, 284–293 (1997)CrossRefGoogle Scholar
  4. 4.
    Maintz, J., Viergever, M.: A Survey of Medical Image Registration. ACM Computing Surveys 2, 1–36 (1998)Google Scholar
  5. 5.
    Thirion, J.P.: Non-rigid Matching Using Demons. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 245–251 (1996)Google Scholar
  6. 6.
    Myronenko, A., Song, X., Carreira-Perpinán, M.A.: Free-Form Nonrigid Image Registration Using Generalized Elastic Nets. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)Google Scholar
  7. 7.
    Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic Demons: Efficient Non-parametric Image Registration. NeuroImage 45, S61–S72 (2009)CrossRefGoogle Scholar
  8. 8.
    Wang, K., He, Y., Qin, H.: Incorporating Rigid Structures in Non-rigid Registration Using Triangular B-Splines. Variational, Geometric, and Level Set Methods in Computer Vision 3752, 235 (2005)CrossRefGoogle Scholar
  9. 9.
    Kohlrausch, J., Rohr, K., Stiehl, H.: A New Class of Elastic Body Splines for Nonrigid Registration of Medical Images. Journal of Mathematical Imaging and Vision 23, 280 (2005)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Davis, M.H., Khotanzad, A., Flamig, D.P., Harms, S.E.: Elastic Body Splines: A Physics Based Approach to Coordinate Transformation in Medical Image Matching. In: IEEE Symposium on Computer-Based Medical System, vol. 8, p. 81 (1995)Google Scholar
  11. 11.
    Zitova, B., Flusser, J.: Image Registration Methods: A Survey. Image and Vision Computing 21, 977–1000 (2003)CrossRefGoogle Scholar
  12. 12.
    Brown, L.G.: A Survey of Image Registration Techniques. ACM Computing Surveys 24, 325–376 (1992)CrossRefGoogle Scholar
  13. 13.
    Fischer, B., Modersitzki, J.: Combination of Automatic Non-rigid and Landmark Based Registration: The Best of Both Worlds. Society of Photo-Optical Instrumentation Engineers 5032, 1037–1048 (2003)Google Scholar
  14. 14.
    Fischer, B., Modersitzki, J.: Curvature Based Image Registration. Journal of Mathematical Imaging and Vision 18, 81–85 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Haker, S., Tannenbaum, A., Kikinis, R.: Mass Preserving Mappings and Image Registration. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 120–127. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Haber, E., Modersitzki, J.: Volume preserving image registration. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 591–598. Springer, Heidelberg (2004)Google Scholar
  17. 17.
    Jian, B., Vemuri, B.C.: A Robust Algorithm for Point Set Registration Using Mixture of Gaussians. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, p. 1246 (2005)Google Scholar
  18. 18.
    Koenderink, J., van Doorn, A.: Image Processing Done Right. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 158–172. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Grinspun, E., Hirani, A., Desbrun, M., Schröder, P.: Discrete Shells. In: ACM Special Interest Group on Graphics and Interactive Techniques, p. 67 (2003)Google Scholar
  20. 20.
    Wardetzky, M., Bergou, M., Harmon, D., Zorin, D., Grinspun, E.: Discrete Quadratic Curvature Energies. Comp. Aided Geom. Design 24, 499–518 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Coleman, T.F., Li, Y.: An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds. SIAM Journal on Optimization 6, 418–445 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Cocosco, C., Kollokian, V., Kwan, R., Pike, G.B., Evans, A.C.: Brainweb: Online Interface to a 3D MRI Simulated Brain Database. Functional Mapping of the Human Brain 5, 425 (1997)Google Scholar
  23. 23.
    Rueckert, D., Sonoda, L., Hayes, C., Hill, D., Leach, M., Hawkes, D.: Nonrigid Registration Using Free-Form Deformations: Application to Breast MR Images. IEEE Transactions on Medical Imaging 18, 712–721 (1999)CrossRefGoogle Scholar
  24. 24.
    Lyons, M., Akamatsu, S., Kamachi, M., Gyoba, J.: Coding Facial Expressions With Gabor Wavelets. In: Face and Gesture Recognition, p. 200 (1998)Google Scholar
  25. 25.

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Geoffrey Oxholm
    • 1
  • Ko Nishino
    • 1
  1. 1.Department of Computer ScienceDrexel UniversityPhiladelphia

Personalised recommendations