An Experimental Study of Color-Based Segmentation Algorithms Based on the Mean-Shift Concept

  • K. Bitsakos
  • C. Fermüller
  • Y. Aloimonos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6312)


We point out a difference between the original mean-shift formulation of Fukunaga and Hostetler and the common variant in the computer vision community, namely whether the pairwise comparison is performed with the original or with the filtered image of the previous iteration. This leads to a new hybrid algorithm, called Color Mean Shift, that roughly speaking, treats color as Fukunaga’s algorithm and spatial coordinates as Comaniciu’s algorithm. We perform experiments to evaluate how different kernel functions and color spaces affect the final filtering and segmentation results, and the computational speed, using the Berkeley and Weizmann segmentation databases. We conclude that the new method gives better results than existing mean shift ones on four standard comparison measures (\(\backsim15\%,\:22\%\) improvement on RAND and BDE measures respectively for color images), with slightly higher running times (\(\backsim10\%\)). Overall, the new method produces segmentations comparable in quality to the ones obtained with current state of the art segmentation algorithms.


Kernel Function Color Space Segmentation Algorithm Segmentation Result Normal Kernel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fukunaga, K., Hostetler, L.: The estimation of the gradient of a density function with applications in pattern recognition. IEEE Trans. Information Theory 21, 32–40 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Cheng, Y.: Mean shift, mode seeking, and clustering. PAMI 17, 790–799 (1995)Google Scholar
  3. 3.
    Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Trans. on PAMI, 603–619 (2002)Google Scholar
  4. 4.
    Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. PAMI 25, 564–577 (2003)Google Scholar
  5. 5.
    Wei, Y., Quan, L.: Region-based progressive stereo matching. In: CVPR, pp. 106–113 (2004)Google Scholar
  6. 6.
    Georgescu, B., Shimshoni, I., Meer, P.: Mean shift based clustering in high dimensions: A texture classification example. In: ICCV, pp. 456–463 (2003)Google Scholar
  7. 7.
    DeMenthon, D., Megret, R.: Spatio-temporal segmentation of video by hierarchical mean shift analysis. Technical report (2002)Google Scholar
  8. 8.
    Yang, C., Duraiswami, R., Gumerov, N., Davis, L.: Improved fast gauss transform and efficient kernel density estimation. In: ICCV, pp. 464–471 (2003)Google Scholar
  9. 9.
    Fashing, M., Tomasi, C.: Mean shift is a bound optimization. PAMI 27, 471–474 (2005)Google Scholar
  10. 10.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV, vol. 2, pp. 416–423 (2001)Google Scholar
  11. 11.
    Alpert, S., Galun, M., Basri, R., Brandt, A.: Image segmentation by probabilistic bottom-up aggregation and cue integration. In: CVPR, pp. 1–8 (2007)Google Scholar
  12. 12.
    Rao, S., Martins, A., Principe, J.: Mean shift: An information theoretic perspective. Pattern Recognition Letters 30, 222–230 (2009)CrossRefGoogle Scholar
  13. 13.
    Christoudias, C., Georgescu, B., Meer, P.: Synergism in low-level vision. ICPR 4, 150–155 (2002)Google Scholar
  14. 14.
    Meila, M.: Comparing clusterings: an axiomatic view. In: ICML, pp. 577–584 (2005)Google Scholar
  15. 15.
    Unnikrishnan, R., Pantofaru, C., Hebert, M.: A measure for objective evaluation of image segmentation algorithms. In: Workshop on Empirical Evaluation Methods in Computer Vision, CVPR (2005)Google Scholar
  16. 16.
    Freixenet, J., Munoz, X., Raba, D., Marti, J., Cuff, X.: Yet another survey on image segmentation: Region and boundary information integration. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 408–422. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Yang, A.Y., Wright, J., Ma, Y., Sastry, S.: Unsupervised segmentation of natural images via lossy data compression. Comput. Vis. Image Underst. 110, 212–225 (2008)CrossRefGoogle Scholar
  18. 18.
    Felzenszwalb, P., Huttenlocher, D.: Efficient graph-based image segmentation. IJCV 59, 167–181 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • K. Bitsakos
    • 1
  • C. Fermüller
    • 1
  • Y. Aloimonos
    • 1
  1. 1.Center for Automation ResearchUniversity of MarylandCollege ParkUSA

Personalised recommendations