Simultaneous Segmentation and Figure/Ground Organization Using Angular Embedding

  • Michael Maire
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6312)


Image segmentation and figure/ground organization are fundamental steps in visual perception. This paper introduces an algorithm that couples these tasks together in a single grouping framework driven by low-level image cues. By encoding both affinity and ordering preferences in a common representation and solving an Angular Embedding problem, we allow segmentation cues to influence figure/ground assignment and figure/ground cues to influence segmentation. Results are comparable to state-of-the-art automatic image segmentation systems, while additionally providing a global figure/ground ordering on regions.


Image Segmentation Natural Image Illusory Contour Edge Pixel Ground Organization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alpert, S., Galun, M., Basri, R., Brandt, A.: Image segmentation by probabilistic bottom-up aggregation and cue integration. In: CVPR (2007)Google Scholar
  2. 2.
    Arbeláez, P.: Boundary extraction in natural images using ultrametric contour maps. In: POCV (2006)Google Scholar
  3. 3.
    Arbeláez, P., Maire, M., Fowlkes, C., Malik, J.: From contours to regions: An empirical evaluation. In: CVPR (2009)Google Scholar
  4. 4.
    Berg, A.C., Malik, J.: Geometric blur for template matching. In: CVPR (2001)Google Scholar
  5. 5.
    Canny, J.: A computational approach to edge detection. PAMI (1986)Google Scholar
  6. 6.
    Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. PAMI (2002)Google Scholar
  7. 7.
    Cour, T., Benezit, F., Shi, J.: Spectral segmentation with multiscale graph decomposition. In: CVPR (2005)Google Scholar
  8. 8.
    Felzenszwalb, P., Huttenlocher, D.: Efficient graph-based image segmentation. In: IJCV (2004)Google Scholar
  9. 9.
    Fowlkes, C., Martin, D., Malik, J.: Learning affinity functions for image segmentation: Combining patch-based and gradient-based approaches. In: CVPR (2003)Google Scholar
  10. 10.
    Fowlkes, C., Martin, D., Malik, J.: Local figure/ground cues are valid for natural images. Journal of Vision (2007)Google Scholar
  11. 11.
    Geiger, D., Kumaran, K., Parida, L.: Visual organization for figure/ground separation. In: CVPR (1996)Google Scholar
  12. 12.
    Gould, S., Fulton, R., Koller, D.: Decomposing a scene into geometric and semantically consistent regions. In: ICCV (2009)Google Scholar
  13. 13.
    Heitger, F., von der Heyd, R.: A computational model of neural contour processing: Figure-ground segregation and illusory contours. In: ICCV (1993)Google Scholar
  14. 14.
    Hoiem, D., Efros, A.A., Hebert, M.: Automatic photo pop-up. In: SIGGRAPH (2005)Google Scholar
  15. 15.
    Hoiem, D., Stein, A.N., Efros, A.A., Hebert, M.: Recovering occlusion boundaries from a single image. In: ICCV (2007)Google Scholar
  16. 16.
    Leichter, I., Lindenbaum, M.: Boundary ownership by lifting to 2.1D. In: ICCV (2009)Google Scholar
  17. 17.
    Maire, M., Arbeláez, P., Fowlkes, C., Malik, J.: Using contours to detect and localize junctions in natural images. In: CVPR (2008)Google Scholar
  18. 18.
    Martin, D., Fowlkes, C., Malik, J.: Learning to detect natural image boundaries using local brightness, color and texture cues. PAMI (2004)Google Scholar
  19. 19.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV (2001)Google Scholar
  20. 20.
    Palmer, S.: Vision Science - From Photons to Phenomenology. MIT Press, Cambridge (1999)Google Scholar
  21. 21.
    Pao, H.K., Geiger, D., Rubin, N.: Measuring convexity for figure/ground separation. In: ICCV (1999)Google Scholar
  22. 22.
    Peterson, M.A., Gibson, B.S.: Must figure-ground organization precede object recognition? An assumption in peril. Psychological Science (1994)Google Scholar
  23. 23.
    Rao, S., Mobahi, H., Yang, A., Sastry, S., Ma, Y.: Natural image segmentation with adaptive texture and boundary encoding. In: Zha, H., Taniguchi, R.-i., Maybank, S. (eds.) ACCV 2009. LNCS, vol. 5994, pp. 135–146. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  24. 24.
    Ren, X., Fowlkes, C., Malik, J.: Figure/ground assignment in natural images. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 614–627. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Saund, E.: Perceptual organization of occluding contours of opaque surfaces. CVIU Special Issue on Perceptual Organization (1999)Google Scholar
  26. 26.
    Saxena, A., Chung, S.H., Ng, A.Y.: 3-d depth reconstruction from a single still image. IJCV (2008)Google Scholar
  27. 27.
    Sharon, E., Galun, M., Sharon, D., Basri, R., Brandt, A.: Hierarchy and adaptivity in segmenting visual scenes. Nature 442, 810–813 (2006)CrossRefGoogle Scholar
  28. 28.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. PAMI (2000)Google Scholar
  29. 29.
    Vecera, S.P., Vogel, E.K., Woodman, G.F.: Lower region: A new cue for figure-ground assignment. Journal of Experimental Psychology: General (2002)Google Scholar
  30. 30.
    Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the mumford and shah model. IJCV (2002)Google Scholar
  31. 31.
    Yu, S.X.: Angular embedding: from jarring intensity differences to perceived luminance. In: CVPR (2009)Google Scholar
  32. 32.
    Yu, S.X., Lee, T.S., Kanade, T.: A hierarchical markov random field model for figure-ground segregation. In: CVPR (2001)Google Scholar
  33. 33.
    Yu, S.X., Shi, J.: Segmentation with pairwise attraction and repulsion. In: ICCV (2001)Google Scholar
  34. 34.
    Zhou, H., Friedman, H.S., von der Heydt, R.: Coding of border ownership in monkey visual cortex. Journal of Neuroscience (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Michael Maire
    • 1
  1. 1.California Institute of TechnologyPasadena

Personalised recommendations