Bilinear Kernel Reduced Rank Regression for Facial Expression Synthesis
Abstract
In the last few years, Facial Expression Synthesis (FES) has been a flourishing area of research driven by applications in character animation, computer games, and human computer interaction. This paper proposes a photo-realistic FES method based on Bilinear Kernel Reduced Rank Regression (BKRRR). BKRRR learns a high-dimensional mapping between the appearance of a neutral face and a variety of expressions (e.g. smile, surprise, squint). There are two main contributions in this paper: (1) Propose BKRRR for FES. Several algorithms for learning the parameters of BKRRR are evaluated. (2) Propose a new method to preserve subtle person-specific facial characteristics (e.g. wrinkles, pimples). Experimental results on the CMU Multi-PIE database and pictures taken with a regular camera show the effectiveness of our approach.
Keywords
Facial Expression Neutral Face Facial Animation Alternate Little Square Ground Truth ImageReferences
- 1.Gratch, J., Rickel, J., Andre, E., Cassell, J., Petajan, E., Badler, N.: Creating interactive virtual humans: some assembly required. IEEE Intelligent Systems 17, 54–63 (2002)Google Scholar
- 2.Choi, C., Aizawa, K., Harashima, H., Takebe, T.: Analysis and synthesis of facial image sequences in model-based image coding. IEEE Trans. CSVT 4, 257–275 (1994)Google Scholar
- 3.Breen, D., Lin, M.: Vision-based control of 3D facial animation. In: SCA, pp. 193–206 (2003)Google Scholar
- 4.Noh, J., Neumann, U.: Expression cloning. SIGGRAPH 1, 277–288 (2001)Google Scholar
- 5.Keeve, E., Girod, S., Kikinis, R., Girod, B.: Deformable modeling of facial tissue for craniofacial surgery simulation. Computer Aided Surgery 3, 223–228 (1998)CrossRefGoogle Scholar
- 6.Liu, Z., Shan, Y., Zhang, Z.: Expressive expression mapping with ratio images. In Proc. of Ann. Conf. on Computer Graphics and Interactive Techniques (2001)Google Scholar
- 7.Zhang, Q., Liu, Z., Guo, B., Shum, H.: Geometry-driven photorealistic facial expression synthesis. IEEE Trans. VCG 12, 48–60 (2006)Google Scholar
- 8.Chung, K.: Gross Anatomy (Board Review). Lippincott Williams & Wilkins, Hagerstown (2005)Google Scholar
- 9.Nguyen, M., Lalonde, J., Efros, A., De la Torre, F.: Image-based shaving. Computer Graphics Forum (Eurographics) 27, 627–635 (2008)CrossRefGoogle Scholar
- 10.Vasilescu, M., Terzopoulos, D.: Multilinear analysis of image ensembles: Tensorfaces. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 447–460. Springer, Heidelberg (2002)CrossRefGoogle Scholar
- 11.Tenenbaum, J., Freeman, W.: Separating style and content with bilinear models. Neural Computation 12, 1247–1283 (2000)CrossRefGoogle Scholar
- 12.Wang, H., Ahuja, N.: Facial expression decomposition. In: ICCV (2003)Google Scholar
- 13.Abboud, B., Davoine, F.: Appearance factorization for facial expression analysis. In: BMVC (2004)Google Scholar
- 14.Vlasic, D., Brand, M., Pfister, H., Popovic, J.: Face transfer with multiliner models. ACM Trans. Graphics 24, 426–433 (2005)CrossRefGoogle Scholar
- 15.Macedo, I., Brazil, E., Velho, L.: Expression transfer between photographs through multilinear aam’s. In: SIBGRAPI, pp. 239–246 (2006)Google Scholar
- 16.Bettinger, F., Cootes, T., Taylor, C.: Modelling facial behaviours. In: BMVC, vol. 2 (2002)Google Scholar
- 17.Zalewski, L., Gong, S.: Synthesis and recognition of facial expressions in virtual 3D views. In: AFGR (2004)Google Scholar
- 18.Chang, Y., Hu, C., Ferisa, R., Turk, M.: Manifold based analysis of facial expression. Image and Vision Computing 24, 605–614 (2005)CrossRefGoogle Scholar
- 19.Kouadio, C., Poulin, P., Lachapelle, P.: Real-time facial animation based upon a bank of 3D facial expressions. In: Proc. of Computer Animation (1998)Google Scholar
- 20.Pighin, F., Szeliski, R., Salesin, D.: Resynthesizing facial animation through 3D model-based tracking. In: ICCV (1999)Google Scholar
- 21.Pyun, H., Kim, Y., Chae, W., Kang, H., Shin, S.: An example-based approach for facial expression cloning. In: SIGGRAPH/Eurographics SCA, pp. 167–176 (2003)Google Scholar
- 22.Parke, F.I., Waters, K.: Computer facial animation. AK Peters, Wellesley (1996)Google Scholar
- 23.Anderson, T.: Estimating linear restrictions on regression coefficients for multivariate normal distributions. Annals of Mathematics Statistics 12, 327–351 (1951)CrossRefGoogle Scholar
- 24.Scharf, L.: The SVD and reduced rank signal processing. Signal Processing 25, 113–133 (2002)CrossRefGoogle Scholar
- 25.Diamantaras, K.: Principal Component Neural Networks (Therory and Applications). John Wiley & Sons, Chichester (1996)Google Scholar
- 26.De la Torre, F., Black, M.: Dynamic coupled component analysis. In: CVPR (2001)Google Scholar
- 27.Baldi, P., Hornik, K.: Neural networks and principal component analysis: Learning from examples without local minima. Neural Networks 2, 53–58 (1989)CrossRefGoogle Scholar
- 28.Bathe, K., Wilson, E.: Numerical Methods in Finite Element. Prentice-Hall, Englewood Cliffs (1971)Google Scholar
- 29.De la Torre, F., Gross, R., Baker, S., Kumar, V.: Representational oriented component analysis for face recognition with one sample image per training class. In: CVPR (2005)Google Scholar
- 30.Gross, R., Matthews, I., Cohn, J., Kanade, T., Baker, S.: The CMU multi-pose, illumination, and expression (multi-pie) face database. Tech. rep., Robotics Institute, Carnegie Mellon University,TR-07-08 (2007)Google Scholar
- 31.Weinberger, K., Tesauro, G.: Metric learning for kernel regression. In: AISTATS (2007)Google Scholar
- 32.Huang, D., De la Torre, F.: Bilinear kernel reduced rank regression for facial expression synthesis. Tech. rep., Robotics Institute, Carnegie Mellon University,TR-10-23 (2010)Google Scholar