NF-Features – No-Feature-Features for Representing Non-textured Regions

  • Ralf Dragon
  • Muhammad Shoaib
  • Bodo Rosenhahn
  • Joern Ostermann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6312)


In order to achieve a complete image description, we introduce no-feature-features (NF-features) representing object regions where regular interest point detectors do not detect features. As these regions are usually non-textured, stable re-localization in different images with conventional methods is not possible. Therefore, a technique is presented which re-localizes once-detected NF-features using correspondences of regular features. Furthermore, a distinctive NF descriptor for non-textured regions is derived which has invariance towards affine transformations and changes in illumination. For the matching of NF descriptors, an approach is introduced that is based on local image statistics.

NF-features can be used complementary to all kinds of regular feature detection and description approaches that focus on textured regions, i.e. points, blobs or contours. Using SIFT, MSER, Hessian-Affine or SURF as regular detectors, we demonstrate that our approach is not only suitable for the description of non-textured areas but that precision and recall of the NF-features is significantly superior to those of regular features. In experiments with high variation of the perspective or image perturbation, at unchanged precision we achieve NF recall rates which are better by more than a factor of two compared to recall rates of regular features.


Image Noise Interest Point Regular Feature Interest Point Detector Maximally Stable Extremal Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
  2. 2.
    Harris, C., Stephen, M.: A combined corner and edge detector. In: Fourth Alvey Vision Conference, pp. 147–151 (1988)Google Scholar
  3. 3.
    Tuytelaars, T., van Gool, L.: Matching widely separated views based on affine invariant regions. IJCV 59(1), 61–85 (2004)CrossRefGoogle Scholar
  4. 4.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable external regions. Image and Vision Computing (2004)Google Scholar
  5. 5.
    Mikolajcyk, K., Schmid, C.: An affine invariant interest point detector. In: ICCV (2002)Google Scholar
  6. 6.
    Mikolajcyk, K., Schmid, C.: Scale and affine invariant interest point detector. IJCV 60, 63–86 (2004)CrossRefGoogle Scholar
  7. 7.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60, 91–110 (2004)CrossRefGoogle Scholar
  8. 8.
    Förstner, W., Dickscheid, T., Schindler, F.: Detecting interpretable and accurate scale-invariant keypoints. In: ICCV, pp. 2256–2263 (2009)Google Scholar
  9. 9.
    Kadir, T., Zisserman, A., Brady, M.: An affine invariant salient region detector. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 228–241. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Ferrari, V., Fevrier, L., Jurie, F., Schmid, C.: Groups of adjacent contour segments for object detection. TPAMI 30(1), 36–51 (2008)Google Scholar
  11. 11.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. TPAMI 27(10), 1615–1630 (2005)Google Scholar
  12. 12.
    Bay, H., Tuytelaars, T., van Gool, L.: Surf: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Gupta, R., Mittal, A.: Smd: A locally stable monotonic change invariant feature descriptor. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 265–277. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Stanski, A., Hellwich, O.: Spiders as robust point descriptors. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 262–268. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Eldar, Y., Lindenbaum, M., Porat, M., Zeevi, Y.Y.: The farthest point strategy for progressive image sampling. TIP 6(9), 1305–1315 (1997)Google Scholar
  16. 16.
    Hartley, R.I.: In defense of the eight-point algorithm. TPAMI 19, 580–593 (1997)Google Scholar
  17. 17.
    Debevec, P.E., Malik, J.: Recovering high dynamic range radiance maps from photographs. In: SIGGRAPH, pp. 369–378 (1997)Google Scholar
  18. 18.
    Geusebroek, J.M., Burghouts, G.J., Smeulders, A.W.M.: The Amsterdam Library of Object Images. IJCV 61(1), 103–112 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ralf Dragon
    • 1
  • Muhammad Shoaib
    • 1
  • Bodo Rosenhahn
    • 1
  • Joern Ostermann
    • 1
  1. 1.Institut fuer InformationsverarbeitungLeibniz Universitaet HannoverHannoverGermany

Personalised recommendations