Advertisement

Scene Carving: Scene Consistent Image Retargeting

  • Alex Mansfield
  • Peter Gehler
  • Luc Van Gool
  • Carsten Rother
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6311)

Abstract

Image retargeting algorithms often create visually disturbing distortion. We introduce the property of scene consistency, which is held by images which contain no object distortion and have the correct object depth ordering. We present two new image retargeting algorithms that preserve scene consistency. These algorithms make use of a user-provided relative depth map, which can be created easily using a simple GrabCut-style interface. Our algorithms generalize seam carving. We decompose the image retargeting procedure into (a) removing image content with minimal distortion and (b) re-arrangement of known objects within the scene to maximize their visibility. Our algorithms optimize objectives (a) and (b) jointly. However, they differ considerably in how they achieve this. We discuss this in detail and present examples illustrating the rationale of preserving scene consistency in retargeting.

Keywords

Background Image Object Occlusion Object Protection Object Positionings Occlusion Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

978-3-642-15549-9_11_MOESM1_ESM.pdf (6 kb)
Electronic Supplementary Material (7 KB)
978-3-642-15549-9_11_MOESM2_ESM.pdf (3.4 mb)
Electronic Supplementary Material (3,500 KB)

References

  1. 1.
    Avidan, S., Shamir, A.: Seam carving for content-aware image resizing. In: SIGGRAPH (2007)Google Scholar
  2. 2.
    Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: PatchMatch: A randomized correspondence algorithm for structural image editing. In: SIGGRAPH (2009)Google Scholar
  3. 3.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. PAMI 23(11) (2001)Google Scholar
  4. 4.
    Cho, T.S., Butman, M., Avidan, S., Freeman, W.: The patch transform and its applications to image editing. In: CVPR (2008)Google Scholar
  5. 5.
    Dong, W., Zhou, N., Paul, J.C., Zhang, X.: Optimized image resizing using seam carving and scaling. ACM Trans. Graph. 28(5) (2009)Google Scholar
  6. 6.
    Gal, R., Sorkine, O., Cohen-Or, D.: Feature-aware texturing. In: Eurographics Symposium on Rendering (2006)Google Scholar
  7. 7.
    Grundmann, M., Kwatra, V., Han, M., Essa, I.: Discontinuous seam-carving for video retargeting. In: CVPR (2010)Google Scholar
  8. 8.
    Han, D., Wu, X., Sonka, M.: Optimal multiple surfaces searching for video/image resizing - a graph-theoretic approach. In: ICCV (2009)Google Scholar
  9. 9.
    Hoiem, D., Stein, A., Efros, A., Hebert, M.: Recovering occlusion boundaries from a single image. In: ICCV (2007)Google Scholar
  10. 10.
    Krähenbühl, P., Lang, M., Hornung, A., Gross, M.: A system for retargeting of streaming video. In: SIGGRAPH (2009)Google Scholar
  11. 11.
    Pritch, Y., Kav-Venaki, E., Peleg, S.: Shift-map image editing. In: ICCV (2009)Google Scholar
  12. 12.
    Rav-Acha, A., Pritch, Y., Shmuel, P.: Making a long video short: Dynamic video synopsis. In: CVPR (2006)Google Scholar
  13. 13.
    Rother, C., Kolmogorov, V., Blake, A.: “GrabCut”: interactive foreground extraction using iterated graph cuts. In: SIGGRAPH (2004)Google Scholar
  14. 14.
    Rubinstein, M., Shamir, A., Avidan, S.: Improved seam carving for video retargeting. In: SIGGRAPH (2008)Google Scholar
  15. 15.
    Rubinstein, M., Shamir, A., Avidan, S.: Multi-operator media retargeting. ACM Trans. Graph. 28(3) (2009)Google Scholar
  16. 16.
    Saxena, A., Sun, M., Ng, A.: Make3d: Learning 3-d scene structure from a single still image. IEEE PAMI 31(5) (2009)Google Scholar
  17. 17.
    Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vision 47(1-3) (2002)Google Scholar
  18. 18.
    Setlur, V., Takagi, S., Raskar, R., Gleicher, M., Gooch, B.: Automatic image retargeting. In: Int. Conf. on Mobile and Ubiquitous Multimedia (2005)Google Scholar
  19. 19.
    Simakov, D., Caspi, Y., Shechtman, E., Irani, M.: Summarizing visual data using bidirectional similarity. In: CVPR (2008)Google Scholar
  20. 20.
    Suh, B., Ling, H., Bederson, B.B., Jacobs, D.W.: Automatic thumbnail cropping and its effectiveness. In: UIT: ACM Symposium on User Interface Software and Technology (2003)Google Scholar
  21. 21.
    Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., Rother, C.: A comparative study of energy minimization methods for markov random fields with smoothness-based priors. PAMI 30(6) (2008)Google Scholar
  22. 22.
    Wang, Y.S., Tai, C.L., Sorkine, O., Lee, T.Y.: Optimized scale-and-stretch for image resizing. In: SIGGRAPH Asia (2008)Google Scholar
  23. 23.
    Wolf, L., Guttmann, M., Cohen-Or, D.: Non-homogeneous content-driven video-retargeting. In: ICCV (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Alex Mansfield
    • 1
  • Peter Gehler
    • 1
  • Luc Van Gool
    • 1
    • 2
  • Carsten Rother
    • 3
  1. 1.Computer Vision LaboratoryETH ZürichSwitzerland
  2. 2.ESAT-PSIKU LeuvenBelgium
  3. 3.Microsoft Research LtdCambridgeUK

Personalised recommendations