Advertisement

Hybrid Reasoning with Non-monotonic Rules

  • Włodzimierz Drabent
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6325)

Abstract

This is an introduction to integrating logic programs with first order theories. The main motivation are the needs of Semantic Web to combine reasoning based on rule systems with that based on Description Logics (DL). We focus on approaches which are able to re-use existing reasoners (for DL and for rule systems). A central issue of this paper is non-monotonic reasoning, which is possibly the main feature of rule based reasoning absent in DL.

We discuss the main approaches to non-monotonic reasoning in logic programming. Then we show and classify various ways of integrating them with first order theories. We argue that for practical purposes none of the approaches seems sufficient, and an approach combining the features of so-called tight and loose coupling is needed.

Keywords

Logic Program Description Logic Stable Model External Theory Closed World Assumption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alferes, J.J., Knorr, M., Swift, T.: Queries to hybrid MKNF knowledge bases through oracular tabling. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 1–16. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Antoniou, G., Damásio, C.V., Grosof, B., Horrocks, I., Kifer, M., Maluszynski, J., Patel-Schneider, P.F.: Combining rules and ontologies. A survey. FP6 NoE REWERSE, Deliverable I3-D3, http://rewerse.net/deliverables/m12/i3-d3.pdf
  3. 3.
    Apt, K.R.: From Logic Programming to Prolog. Prentice-Hall, Englewood Cliffs (1997)Google Scholar
  4. 4.
    Apt, K.R., Bol, R.N.: Logic Programming and Negation: A Survey. Journal of Logic Programming 19/20, 9–71 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Baral, C., Gelfond, M.: Logic Programming and Knowledge Representation. Journal of Logic Programming 19/20, 73–148 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bol, R.N., Degerstedt, L.: Tabulated resolution for the well-founded semantics. J. Log. Program. 34(2), 67–109 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chen, W., Warren, D.S.: Tabled evaluation with delaying for general logic programs. J. ACM 43(1), 20–74 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Clark, K.L.: Negation as Failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp. 293–322. Plenum Press, New York (1978)CrossRefGoogle Scholar
  9. 9.
    Clark & Parsia, LLC: Pellet: The open source OWL 2 reasoner, http://www.mindswap.org/2003/pellet/index.shtml, http://clarkparsia.com/pellet
  10. 10.
    de Bruijn, J., Eiter, T., Polleres, A., Tompits, H.: On representational issues about combinations of classical theories with nonmonotonic rules. In: Lang, J., Lin, F., Wang, J. (eds.) KSEM 2006. LNCS (LNAI), vol. 4092, pp. 1–22. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    de Bruijn, J., Pearce, D., Polleres, A., Valverde, A.: A semantical framework for hybrid knowledge bases. Knowledge and Information Systems (to appear, 2010)Google Scholar
  12. 12.
    Denecker, M., Bruynooghe, M., Marek, V.W.: Logic programming revisited: Logic programs as inductive definitions. ACM Trans. Comput. Log. 2(4), 623–654 (2001)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Dix, J.: A Classification Theory of Semantics of Normal Logic Programs: II. Weak Properties. Fundamenta Informaticae 22, 257–288 (1995)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Doets, K.: From Logic to Logic Programming. MIT Press, Cambridge (1994)zbMATHGoogle Scholar
  15. 15.
    Donini, F., Lenzerini, M., Nardi, D., Schaerf, A.: \(\cal AL\)-log: Integrating Datalog and description logics. Intelligent Information Systems 10(3), 227–252 (1998)CrossRefGoogle Scholar
  16. 16.
    Drabent, W.: SLS-resolution without floundering. In: Pereira, L.M., Nerode, A. (eds.) Proc. 2nd International Workshop on Logic Programming and Non-Monotonic Reasoning, pp. 82–98. MIT Press, Cambridge (June 1993)Google Scholar
  17. 17.
    Drabent, W.: What is failure? An approach to constructive negation. Acta Informatica 32(1), 27–59 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Drabent, W., Maluszynski, J.: Hybrid Rules with Well-Founded Semantics. To appear in Knowledge and Information Systems (2010)Google Scholar
  19. 19.
    Drabent, W.: Completeness of SLDNF-resolution for non-floundering queries. J. Logic Programming 27(2), 89–106 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Drabent, W., Eiter, T., Ianni, G., Krennwallner, T., Lukasiewicz, T., Maluszynski, J.: Hybrid reasoning with rules and ontologies. In: Bry, F., Maluszynski, J. (eds.) REWERSE 2009. LNCS, vol. 5500, pp. 1–49. Springer, Heidelberg (2009)Google Scholar
  21. 21.
    Drabent, W., Henriksson, J., Maluszynski, J.: HD-rules: A hybrid system interfacing Prolog with DL-reasoners. In: Proceedings of the ICLP’07 Workshop on Applications of Logic Programming to the Web, Semantic Web and Semantic Web Services (ALPSWS 2007), CEUR Workshop Proceedings, vol. 287 (2007), http://www.ceur-ws.org/Vol-287
  22. 22.
    Drabent, W., Henriksson, J., Maluszynski, J.: Hybrid reasoning with rules and constraints under well-founded semantics. In: Marchiori, M., Pan, J.Z., de Sainte Marie, C. (eds.) RR 2007. LNCS, vol. 4524, pp. 348–357. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Drabent, W., Małuszyński, J.: Well-founded Semantics for Hybrid Rules. In: Marchiori, M., Pan, J.Z., de Sainte Marie, C. (eds.) RR 2007. LNCS, vol. 4524, pp. 1–15. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  24. 24.
    Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM Transactions on Database Systems 22(3), 364–418 (1997)CrossRefGoogle Scholar
  25. 25.
    Eiter, T., Ianni, G., Krennwallner, T.: Answer set programming: A primer. In: Tessaris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.C., Schmidt, R.A. (eds.) Reasoning Web. Semantic Technologies for Information Systems. LNCS, vol. 5689, pp. 40–110. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. 26.
    Eiter, T., Ianni, G., Krennwallner, T., Polleres, A.: Rules and ontologies for the Semantic Web. In: Baroglio, C., Bonatti, P.A., Maluszynski, J., Marchiori, M., Polleres, A., Schaffert, S. (eds.) Reasoning Web. LNCS, vol. 5224, pp. 1–53. Springer, Heidelberg (2008), Slides available at, http://rease.semanticweb.org/CrossRefGoogle Scholar
  27. 27.
    Eiter, T., Ianni, G., Krennwallner, T., Schindlauer, R.: Exploiting conjunctive queries in description logic programs. Ann. Math. Artif. Intell. 53(1-4), 115–152 (2008) doi:10.1007/s10472-009-9111-3 MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R.: Well-founded semantics for description logic programs in the semantic web. Research Report 1843-09-01, INFSYS, Technische Universität, Wien. To appear in ACM Transactions on Computational Logic (2009)Google Scholar
  29. 29.
    Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programminag with description logics for the Semantic Web. Artificial Intelligence 172(12-13), 1495–1539 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: Effective Integration of Declarative Rules with External Evaluations for Semantic Web Reasoning. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 273–287. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  31. 31.
    Feier, C., Heymans, S.: Hybrid reasoning with forest logic programs. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 338–352. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  32. 32.
    Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: A conflict-driven answer set solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 260–265. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  33. 33.
    Gelfond, M.: Answer sets. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation. Elsevier, Amsterdam (2007)Google Scholar
  34. 34.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R.A., Bowen, K. (eds.) Proceedings of the Fifth International Conference on Logic Programming, pp. 1070–1080. MIT Press, Cambridge (1988)Google Scholar
  35. 35.
    Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases. New Generation Computing 9, 365–385 (1991)CrossRefzbMATHGoogle Scholar
  36. 36.
    Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional satisfiability. J. Autom. Reasoning 36(4), 345–377 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: Combining logic programs with description logics. In: Proceedings of the Twelfth International World Wide Web Conference, WWW 2003, Budapest, Hungary, pp. 48–57 (2003)Google Scholar
  38. 38.
    Haarslev, V., Möller, R.: Description of the RACER system and its applications. In: DL 2001 Workshop on Description Logics, Stanford, CA (2001)Google Scholar
  39. 39.
    Hitzler, P., Parsia, B.: Ontologies and rules. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies, 2nd edn., pp. 111–132. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  40. 40.
    Hölldobler, S., Ramli, C.D.P.K.: Logic programs under three-valued Lukasiewicz semantics. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 464–478. Springer, Heidelberg (2009)Google Scholar
  41. 41.
    Horrocks, I., Patel-Schneider, P.F., Bechhofer, S., Tsarkov, D.: OWL rules: A proposal and prototype implementation. J. Web Sem. 3(1), 23–40 (2005)CrossRefGoogle Scholar
  42. 42.
    Knorr, M., Alferes, J.J., Hitzler, P.: A coherent well-founded model for hybrid MKNF knowledge bases. In: Ghallab, M., Spyropoulos, C.D., Fakotakis, N., Avouris, N.M. (eds.) ECAI. Frontiers in Artificial Intelligence and Applications, vol. 178, pp. 99–103. IOS Press, Amsterdam (2008)Google Scholar
  43. 43.
    Kunen, K.: Negation in logic programming. Journal of Logic Programming 4(4), 289–308 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Kunen, K.: Signed data dependencies in logic programs. J. Log. Program. 7(3), 231–245 (1989)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Leone, N.: Exploiting ASP in real-world applications: Main strengths and challenges. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 628–630. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  46. 46.
    Leone, N., Faber, W.: The DLV project: A tour from theory and research to applications and market. In: de la Banda, M.G., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 53–68. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  47. 47.
    Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV System for Knowledge Representation and Reasoning. ACM Transactions on Computational Logic 7(3), 499–562 (2006)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Levy, A., Rousset, M.: CARIN: A representation language combining Horn rules and description logics. Artificial Intelligence 104(1-2), 165–209 (1998)CrossRefzbMATHGoogle Scholar
  49. 49.
    Lifschitz, V.: Nonmonotonic databases and epistemic queries. In: Proceedings IJCAI-91, pp. 381–386 (1991)Google Scholar
  50. 50.
    Lukasiewicz, T.: A novel combination of answer set programming with description logics for the Semantic Web. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 384–398. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  51. 51.
    Małuszyński, J.: Integration of rules and ontologies. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of Database Systems, pp. 1546–1551. Springer, US (2009)Google Scholar
  52. 52.
    Marek, V.W., Truszczyński, M.: Stable models and an alternative logic programming paradigm. In: Apt, K.R., Marek, V.W., Truszczyński, M., Warren, D.S. (eds.) The Logic Programming Paradigm – A 25-Year Perspective, pp. 375–398. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  53. 53.
    Marriott, K., Stuckey, P.J., Wallace, M.: Constraint logic programming. In: Handbook of Constraint Programming. Elsevier, Amsterdam (2006)Google Scholar
  54. 54.
    Motik, B., Rosati, R.: Reconciling description logics and rules. J. ACM 57(5) (2010)Google Scholar
  55. 55.
    Niemelä, I.: Answer set programming: A declarative approach to solving search problems. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp. 15–18. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  56. 56.
    Nilsson, U., Małuszyński, J.: Logic, Programming and Prolog, 2nd edn. John Wiley and Sons, Chichester (1995), http://www.ida.liu.se/~ulfni/pp/zbMATHGoogle Scholar
  57. 57.
    Przymusinski, T.C.: Every logic program has a natural stratification and an iterated least fixed point model. In: PODS, pp. 11–21. ACM Press, New York (1989)Google Scholar
  58. 58.
    Przymusinski, T.C.: On the Declarative and Procedural Semantics of Logic Programs. Journal of Automated Reasoning 5(2), 167–205 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Reiter, R.: On Closed World Data Bases. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp. 55–76. Plenum Press, New York (1978)CrossRefGoogle Scholar
  60. 60.
    Rosati, R.: On the decidability and complexity of integrating ontologies and rules. Journal of Web Semantics 3(1), 61–73 (2005)CrossRefGoogle Scholar
  61. 61.
    Rosati, R.: \({\cal DL}\)+log: Tight integration of Description Logics and disjunctive Datalog. In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) KR, pp. 68–78. AAAI Press, Menlo Park (2006)Google Scholar
  62. 62.
    Ross, K.A.: A prodedural semantics for well-founded negation in logic programs. J. Log. Program. 13(1), 1–22 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Stärk, R.F.: From logic programs to inductive definitions. In: Hodges, W.A., et al. (eds.) Logic: From Foundations to Applications, European Logic Colloquium’93, pp. 453–481. Clarendon Press, Oxford (1996)Google Scholar
  64. 64.
    Swift, T., Warren, D.S., et al.: The XSB System. Version 3.2., Programmer’s Manual, vol. 1 (2009), http://xsb.sourceforge.net
  65. 65.
    Syrjänen, T., Niemelä, I.: The Smodels system. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 434–438. Springer, Heidelberg (2001)Google Scholar
  66. 66.
    Van Gelder, A., Ross, K.A., Schlipf, J.S.: The Well-Founded Semantics for General Logic Programs. Journal of the ACM 38(3), 620–650 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    World Wide Web Consortium: OWL Web Ontology Language Current Status, http://www.w3.org/standards/techs/owl/

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Włodzimierz Drabent
    • 1
    • 2
  1. 1.Institute of Computer SciencePolish Academy of SciencesWarszawaPoland
  2. 2.Department of Computer and Information ScienceLinköping UniversityLinköpingSweden

Personalised recommendations