Polynomial-Time Identification of Multiple Context-Free Languages from Positive Data and Membership Queries

  • Ryo Yoshinaka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6339)

Abstract

This paper presents an efficient algorithm that identifies a rich subclass of multiple context-free languages in the limit from positive data and membership queries by observing where each tuple of strings may occur in sentences of the language of the learning target. Our technique is based on Clark et al.’s work (ICGI 2008) on learning of a subclass of context-free languages. Our algorithm learns those context-free languages as well as many non-context-free languages.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clark, A., Eyraud, R.: Polynomial identification in the limit of substitutable context-free languages. Journal of Machine Learning Research 8, 1725–1745 (2007)MathSciNetGoogle Scholar
  2. 2.
    Clark, A., Eyraud, R., Habrard, A.: A polynomial algorithm for the inference of context free languages. In: [16], pp. 29–42Google Scholar
  3. 3.
    Yoshinaka, R.: Learning mildly context-sensitive languages with multidimensional substitutability from positive data. In: Gavaldà, R., Lugosi, G., Zeugmann, T., Zilles, S. (eds.) ALT 2009. LNCS, vol. 5809, pp. 278–292. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Clark, A., Eyraud, R., Habrard, A.: A note on contextual binary feature grammars. In: EACL 2009 workshop on Computational Linguistic Aspects of Grammatical Inference, pp. 33–40 (2009)Google Scholar
  5. 5.
    Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars. Theoretical Computer Science 88(2), 191–229 (1991)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Kracht, M.: The Mathematics of Language. Studies in Generative Grammar, vol. 63, pp. 408–409. Walter de Gruyter, Berlin (2003)MATHGoogle Scholar
  7. 7.
    Rambow, O., Satta, G.: Independent parallelism in finite copying parallel rewriting systems. Theor. Comput. Sci. 223(1-2), 87–120 (1999)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kaji, Y., Nakanishi, R., Seki, H., Kasami, T.: The universal recognition problems for parallel multiple context-free grammars and for their subclasses. IEICE Transaction on Information and Systems E75-D(7), 499–508 (1992)Google Scholar
  9. 9.
    Gold, E.M.: System identification via state characterization. Automatica 8(5), 621–636 (1972)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Angluin, D.: Learning regular sets from queries and counterexamples. Information and Computation 75(2), 87–106 (1987)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Sakakibara, Y.: Learning context-free grammars from structural data in polynomial time. Theoretical Computer Science 76(2-3), 223–242 (1990)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Drewes, F., Högberg, J.: Learning a regular tree language from a teacher. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 279–291. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Besombes, J., Marion, J.Y.: Learning tree languages from positive examples and membership queries. Theoretical Computer Science 382(3), 183–197 (2007)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kasprzik, A.: A learning algorithm for multi-dimensional trees, or: Learning beyond context-freeness. In: [16], pp. 111–124Google Scholar
  15. 15.
    Clark, A.: Distributional learning of some context-free languages with a minimally adequate teacher. In: proceedings of the 10th International Colloquium on Grammatical Inference (2010) (to appear)Google Scholar
  16. 16.
    Clark, A., Coste, F., Miclet, L. (eds.): ICGI 2008. LNCS (LNAI), vol. 5278. Springer, Heidelberg (2008)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ryo Yoshinaka
    • 1
  1. 1.Minato Discrete Structure Manipulation System ProjectJapan Science and Technology AgencyErato

Personalised recommendations