Modeling User Knowledge from Queries: Introducing a Metric for Knowledge

  • Frans van der Sluis
  • Egon L. van den Broek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6335)

Abstract

The user’s knowledge plays a pivotal role in the usability and experience of any information system. Based on a semantic network and query logs, this paper introduces a metric for users’ knowledge on a topic. The finding that people often return to several sets of closely related, well-known, topics, leading to certain concentrated, highly activated areas in the semantic network, forms the core of this metric. Tests were performed determining the knowledgeableness of 32,866 users on in total 8 topics, using a data set of more than 6 million queries. The tests indicate the feasibility and robustness of such a user-centered indicator.

Keywords

Posit Barbiturate Furnas 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Budanitsky, A., Hirst, G.: Evaluating wordnet-based measures of semantic distance. Computational Linguistics 32(1), 13–47 (2006)CrossRefGoogle Scholar
  2. Furnas, G.W., Landauer, T.K., Gomez, L.M., Dumais, S.T.: The vocabulary problem in human-system communication. ACM Commun. 30(11), 964–971 (1987)CrossRefGoogle Scholar
  3. Gauch, S., Speretta, M., Chandramouli, A., Micarelli, A.: User profiles for personalized information access. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 54–89. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. Gervasi, V., Ambriola, V.: Quantitative assessment of textual complexity. In: Merlini Barbaresi, L. (ed.) Complexity in Language and Text, pp. 197–228. Plus Pisa University Press, Pisa, Italy (2003)Google Scholar
  5. Kintsch, W.: Text comprehension, memory, and learning. American Psychologist 49(4), 294–303 (1994)CrossRefGoogle Scholar
  6. LaBerge, D., Samuels, S.J.: Toward a theory of automatic information processing in reading. Cognitive Psychology 6(2), 293–323 (1974)CrossRefGoogle Scholar
  7. Miller, G.A.: Wordnet: a lexical database for english. ACM Commun. 38(11), 39–41 (1995)CrossRefGoogle Scholar
  8. Pass, G., Chowdhury, A., Torgeson, C.: A picture of search. In: Proc. 1st Intl. Conf. on Scalable Information Systems. ACM Press, New York (2006)Google Scholar
  9. Reeve, J.: The interest-enjoyment distinction in intrinsic motivation. Motivation and Emotion 13(2), 83–103 (1989)CrossRefGoogle Scholar
  10. Schraw, G., Lehman, S.: Situational interest: A review of the literature and directions for future research. Educational Psychology Review 13(30), 23–52 (2001)CrossRefGoogle Scholar
  11. Van der Sluis, F., Van den Broek, E.L.: Applying Ockham’s razor to search results: Using complexity measures in information retrieval. In: Information Interaction in Context (IIiX) Symposium, ACM, New York (in Press)Google Scholar
  12. Van der Sluis, F., Van den Broek, E.L., Van Dijk, E.M.A.G.: Information Retrieval eXperience (IRX): Towards a human-centered personalized model of relevance. In: Third International Workshop on Web Information Retrieval Support Systems, Toronto, Canada, August 31 (2010)Google Scholar
  13. Wedig, S., Madani, O.: A large-scale analysis of query logs for assessing personalization opportunities. In: KDD 2006: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 742–747. ACM, New York (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Frans van der Sluis
    • 1
  • Egon L. van den Broek
    • 1
  1. 1.Department of Human Media InteractionUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations