Advertisement

A Visual Digital Library Approach for Time-Oriented Scientific Primary Data

  • Jürgen Bernard
  • Jan Brase
  • Dieter Fellner
  • Oliver Koepler
  • Jörn Kohlhammer
  • Tobias Ruppert
  • Tobias Schreck
  • Irina Sens
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6273)

Abstract

Digital Library support for textual and certain types of non-textual documents has significantly advanced over the last years. While Digital Library support implies many aspects along the whole library workflow model, interactive and visual retrieval allowing effective query formulation and result presentation are important functions. Recently, new kinds of non-textual documents which merit Digital Library support, but yet cannot be accommodated by existing Digital Library technology, have come into focus. Scientific primary data, as produced for example, by scientific experimentation, earth observation, or simulation, is such a data type. We report on a concept and first implementation of Digital Library functionality, supporting visual retrieval and exploration in a specific important class of scientific primary data, namely, time-oriented data. The approach is developed in an interdisciplinary effort by experts from the library, natural sciences, and visual analytics communities. In addition to presenting the concept and discussing relevant challenges, we present results from a first implementation of our approach as applied on a real-world scientific primary data set.

Keywords

Visual Analysis Visual Search Content-Based Search Scientific Primary Data Visual Cluster Analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    German Research Foundation (DFG): Report on round table meeting of research data. Whitepaper (January 2008), http://www.dfg.de/download/pdf/foerderung/programme/lis/forschungsprimaerdaten_0108.pdf (in German)
  2. 2.
    Society for Scientific Data Processing Goettingen: Cooperative long-term preservation for research centers. Project Report (April 2009) (in German)Google Scholar
  3. 3.
    Lagoze, C., Payette, S., Shin, E., Wilper, C.: Fedora: an architecture for complex objects and their relationships. Int. J. Digit. Libr. 6(2), 124–138 (2006)CrossRefGoogle Scholar
  4. 4.
    Witten, I.H., Mcnab, R.J., Boddie, S.J., Bainbridge, D.: Greenstone: A comprehensive open-source digital library software system. In: Proceedings of the Fifth ACM International Conference on Digital Libraries (2000)Google Scholar
  5. 5.
    Castelli, D., Pagano, P.: Opendlib: A digital library service system. In: Agosti, M., Thanos, C. (eds.) ECDL 2002. LNCS, vol. 2458, pp. 292–308. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Dunn, J.W., Mayer, C.A.: Variations: a digital music library system at indiana university. In: DL 1999: Proceedings of the Fourth ACM Conference on Digital Libraries, pp. 12–19. ACM, New York (1999)CrossRefGoogle Scholar
  7. 7.
    Agosti, M., Berretti, S., Brettlecker, G., Bimbo, A.D., Ferro, N., Fuhr, N., Keim, D.A., Klas, C.P., Lidy, T., Milano, D., Norrie, M.C., Ranaldi, P., Rauber, A., Schek, H.J., Schreck, T., Schuldt, H., Signer, B., Springmann, M.: Delosdlms - the integrated delos digital library management system. In: DELOS Conference, pp. 36–45 (2007)Google Scholar
  8. 8.
    Berndt, R., Blmel, I., Krottmaier, H., Wessel, R., Schreck, T.: Demonstration of user interfaces for querying in 3d architectural content in PROBADO3D. In: 13th European Conference on Digital Libraries (2009)(Demonstration Paper)Google Scholar
  9. 9.
    PsychData National Repository for Psychological Research Data (in German), http://psychdata.zpid.de/
  10. 10.
    PANGAEA Publishing Network for Geoscientific & Environmental Data, http://www.pangaea.de/
  11. 11.
    Dryad Digital Repository for Data Underlying Published Works, http://www.datadryad.org/
  12. 12.
    Brase, J.: Using digital library techniques-Registration of scientific primary data. In: Heery, R., Lyon, L. (eds.) ECDL 2004. LNCS, vol. 3232, pp. 488–494. Springer, Heidelberg (2004)Google Scholar
  13. 13.
    ELIXIR European Life Sciences Infrastructure for Biological Information, http://www.elixir-europe.org/
  14. 14.
    Bamboo Research Initiative, http://projectbamboo.org/
  15. 15.
    Liao, T.W.: Clustering of time series data-a survey. Pattern Recognition 38, 1857–1874 (2005)zbMATHCrossRefGoogle Scholar
  16. 16.
    Agrawal, R., Lin, K., Sawhney, H., Shim, K.: Fast similarity search in the presence of noise, scaling, and translation in time-series databases. In: Proceedings of the International Conference on Very Large Data Bases, Citeseer, pp. 490–501 (1995)Google Scholar
  17. 17.
    Agrawal, R., Faloutsos, C., Swami, A.: Efficient similarity search in sequence databases. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 676–693. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time series, with implications for streaming algorithms. In: Proc. ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery (2003)Google Scholar
  19. 19.
    Hochheiser, H., Shneiderman, B.: Dynamic query tools for time series data sets: Timebox widgets for interactive exploration. Information Visualization 3(1), 1–18 (2004)CrossRefGoogle Scholar
  20. 20.
    Schreck, T., Bernard, J., Von Landesberger, T., Kohlhammer, J.: Visual cluster analysis of trajectory data with interactive kohonen maps. Information Visualization 8(1), 14–29 (2009)CrossRefGoogle Scholar
  21. 21.
    Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  22. 22.
    Šimunić, K.: Visualization of stock market charts. In: Proc. Int. Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (2003)Google Scholar
  23. 23.
    World Data Center System, http://www.ngdc.noaa.gov/wdc/
  24. 24.
    Baseline Surface Radiation Network (BSRN), http://www.bsrn.awi.de/
  25. 25.
    Ben, S.: The eyes have it: A task by data type taxonomy for information visualizations. In: Proc. of the 1996 IEEE Symposium on Visual Languages, pp. 336–343. IEEE Computer Society, Washington (1996)Google Scholar
  26. 26.

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jürgen Bernard
    • 1
  • Jan Brase
    • 2
  • Dieter Fellner
    • 1
    • 3
  • Oliver Koepler
    • 2
  • Jörn Kohlhammer
    • 1
    • 3
  • Tobias Ruppert
    • 3
  • Tobias Schreck
    • 1
  • Irina Sens
    • 2
  1. 1.Technische Universität DarmstadtGermany
  2. 2.German National Library of Science and TechnologyHannoverGermany
  3. 3.Fraunhofer Institute for Computer Graphics ResearchDarmstadtGermany

Personalised recommendations