Ranking Entities Using Web Search Query Logs

  • Bodo Billerbeck
  • Gianluca Demartini
  • Claudiu S. Firan
  • Tereza Iofciu
  • Ralf Krestel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6273)


Searching for entities is an emerging task in Information Retrieval for which the goal is finding well defined entities instead of documents matching the query terms. In this paper we propose a novel approach to Entity Retrieval by using Web search engine query logs. We use Markov random walks on (1) Click Graphs – built from clickthrough data – and on (2) Session Graphs – built from user session information. We thus provide semantic bridges between different query terms, and therefore indicate meaningful connections between Entity Retrieval queries and related entities.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agichtein, E., Brill, E., Dumais, S.: Improving web search ranking by incorporating user behavior information. In: SIGIR (2006)Google Scholar
  2. 2.
    Balog, K., Bron, M., de Rijke, M.: Category-based query modeling for entity search. In: Gurrin, C., He, Y., Kazai, G., Kruschwitz, U., Little, S., Roelleke, T., Rüger, S., van Rijsbergen, K. (eds.) ECIR 2010. LNCS, vol. 5993, pp. 319–331. Springer, Heidelberg (2010)Google Scholar
  3. 3.
    Bast, H., Chitea, A., Suchanek, F., Weber, I.: Ester: efficient search on text, entities, and relations. In: SIGIR (2007)Google Scholar
  4. 4.
    Cheng, T., Chang, K.C.-C.: Entity search engine: Towards agile best-effort information integration over the web. In: CIDR (2007)Google Scholar
  5. 5.
    Craswell, N., Szummer, M.: Random walks on the click graph. In: SIGIR (2007)Google Scholar
  6. 6.
    Cucerzan, S., White, R.W.: Query suggestion based on user landing pages. In: SIGIR (2007)Google Scholar
  7. 7.
    de Vries, A.P., Vercoustre, A.-M., Thom, J.A., Craswell, N., Lalmas, M.: Overview of the inex 2007 entity ranking track. In: Fuhr, N., Lalmas, M., Trotman, A. (eds.) INEX 2006. LNCS, vol. 4518, pp. 1–11. Springer, Heidelberg (2007)Google Scholar
  8. 8.
    Demartini, G., Firan, C.S., Iofciu, T., Krestel, R., Nejdl, W.: A model for ranking entities and its application to wikipedia. In: LA-WEB (2008)Google Scholar
  9. 9.
    Demartini, G., Firan, C.S., Iofciu, T., Nejdl, W.: Semantically enhanced entity ranking. In: Bailey, J., Maier, D., Schewe, K.-D., Thalheim, B., Wang, X.S. (eds.) WISE 2008. LNCS, vol. 5175, pp. 176–188. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Guo, J., Xu, G., Cheng, X., Li, H.: Named entity recognition in query. In: SIGIR (2009)Google Scholar
  11. 11.
    Kumar, R., Tomkins, A.: A characterization of online search behavior. IEEE Data Eng. Bull. (2009)Google Scholar
  12. 12.
    Pehcevski, J., Vercoustre, A.-M., Thom, J.A.: Exploiting locality of wikipedia links in entity ranking. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 258–269. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: WWW (2007)Google Scholar
  14. 14.
    Vercoustre, A.-M., Thom, J.A., Pehcevski, J.: Entity ranking in wikipedia. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 199–213. Springer, Heidelberg (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Bodo Billerbeck
    • 1
  • Gianluca Demartini
    • 2
  • Claudiu S. Firan
    • 2
  • Tereza Iofciu
    • 2
  • Ralf Krestel
    • 2
  1. 1.Microsoft ResearchCambridgeUK
  2. 2.L3S Research CenterHannoverGermany

Personalised recommendations