Advertisement

Energy Efficient Swarm Deployment for Search in Unknown Environments

  • Timothy Stirling
  • Dario Floreano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6234)

Abstract

This paper introduces three strategies to deploy a swarm of robots in unknown environments for a search task, aiming to reduce the total swarm energy cost with rapid operation for applications such as disaster mitigation. We are motivated by current research on flying robot swarms [10].

Keywords

Search Task Unknown Environment Disaster Mitigation Multiple Robot Single Robot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Burgard, W., Moors, M., Stachniss, C., Schneider, F.: Coordinated multi-robot exploration. IEEE Transactions on Robotics 21(3), 376–386 (2005)CrossRefGoogle Scholar
  2. 2.
    Hayes, A.T.: How many robots? Group size and efficiency in collective search tasks. In: Proceedings of the 6th Int. Symp. on Distributed Autonomous Robotic Systems, DARS 2002, pp. 289–298 (2002)Google Scholar
  3. 3.
    Howard, A., Mataric, M.J., Sukhatme, G.S.: An incremental self-deployment algorithm for mobile sensor networks. Autonomous Robots 13(2), 113–126 (2002)zbMATHCrossRefGoogle Scholar
  4. 4.
    Mei, Y., Lu, Y.H., Hu, Y., Lee, C.: Deployment of mobile robots with energy and timing constraints. IEEE Transactions on Robotics 22(3), 507–522 (2006)CrossRefGoogle Scholar
  5. 5.
    Meier, D., Stachniss, C., Burgard, W.: Cooperative exploration with multiple robots using low bandwidth communication. In: Beyerer, J., Puente, F., Sommer, K. (eds.) Informationsfusion in der Mess- und Sensortechnik, pp. 145–157 (2006)Google Scholar
  6. 6.
    Roberts, J., Stirling, T., Zufferey, J.C., Floreano, D.: 2.5D infrared range and bearing system for collective robotics. In: Proceedings of the International Conference on Intelligent Robots and Systems, pp. 3659–3664. IEEE, Piscataway (2009)Google Scholar
  7. 7.
    Roberts, J., Zufferey, J.C., Floreano, D.: Energy management for indoor hovering robots. In: Proc. IROS 2008, pp. 1242–1247. IEEE, Piscataway (2008)Google Scholar
  8. 8.
    Rosenfeld, A., Kaminka, G.A., Kraus, S.: A Study of Scalability Properties in Robotic Teams. In: Coordination of Large-Scale Multiagent Systems, Part 1, pp. 27–51. Springer, Berlin (2006)CrossRefGoogle Scholar
  9. 9.
    Rybski, P., Larson, A., Lindahl, M., Gini, M.: Performance evaluation of multiple robots in a search and retrieval task. In: Proceedings of the Workshop on Artificial Intelligence and Manufacturing, pp. 153–160. AAAI Press, Menlo Park (1998)Google Scholar
  10. 10.
    Stirling, T., Wischmann, S., Floreano, D.: Energy-efficient indoor search by swarms of simulated flying robots without global information. Swarm Intelligence 4(2), 117–143 (2010)CrossRefGoogle Scholar
  11. 11.
    Zlot, R.M., Stentz, A., Dias, M.B., Thayer, S.: Multi-robot exploration controlled by a market economy. In: IEEE International Conference on Robotics and Automation, vol. 3, pp. 3016–3023 (May 2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Timothy Stirling
    • 1
  • Dario Floreano
    • 1
  1. 1.Laboratory of Intelligent Systems (LIS)Ecole Polytechnique Fédéral de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations