An Efficient Optimization Method for Revealing Local Optima of Projection Pursuit Indices

  • Souad Larabi Marie-Sainte
  • Alain Berro
  • Anne Ruiz-Gazen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6234)


In order to summarize and represent graphically multidimensional data in statistics, projection pursuit methods look for projection axes which reveal structures, such as possible groups or outliers, by optimizing a function called projection index. To determine these possible interesting structures, it is necessary to choose an optimization method capable to find not only the global optimum of the projection index but also the local optima susceptible to reveal these structures. For this purpose, we suggest a metaheuristic which does not ask for many parameters to settle and which provokes premature convergence to local optima. This method called Tribes is a hybrid Particle Swarm Optimization method (PSO) based on a stochastic optimization technique developed in [2]. The computation is fast even for big volumes of data so that the use of the method in the field of projection pursuit fulfills the statistician expectations.


Particle Swarm Optimization Local Optimum Good Particle Projection Pursuit Interesting Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Caussinus, H., Ruiz-Gazen, A.: Exploratory projection pursuit. In: Govaert, G. (ed.) Data Analysis, Digital Signal and Image Processing, pp. 67–92. Wiley, Chichester (2009)Google Scholar
  2. 2.
    Clerc, M.: Particle swarm optimization. In: International Scientific and Technical Encyclopaedia. Wiley, Hoboken (2006)Google Scholar
  3. 3.
    Clerc, M., Cooren, Y., Siarry, P.: Optimisation par essaim particulaire améliorée par hybridation avec un algorithme à estimation de distribution. Journées doctorales MACS 5(1), 21–27 (2008)Google Scholar
  4. 4.
    Cooren, Y., Clerc, M., Siarry, P.: Performance evaluation of TRIBES, an adaptive particle swarm optimization algorithm. Swarm Intelligence 3, 149–178 (2009)CrossRefGoogle Scholar
  5. 5.
    Cook, D., Swayne, D.F.: Interactive and Dynamic Graphics for Data Analysis. Springer, New York (2007)zbMATHCrossRefGoogle Scholar
  6. 6.
    Cook, D., Caragea, D., Honavar, H.: Visualization in classification problems. In: Antoch, J. (ed.) Computational Statistics (COMPSTAT), pp. 799–806. Springer, Berlin (2004)Google Scholar
  7. 7.
    Friedman, J.H.: Exploratory Projection Pursuit. J. Amer. Statist. Assoc. 82(1), 249–266 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Friedman, J.H., Tukey, J.W.: A Projection Pursuit Algorithm for Exploratory Data Analysis. IEEE Trans. Comput. C-23, 881–889 (1974)Google Scholar
  9. 9.
    Huber, P.J.: Projection pursuit. The Annals of Statistics 13(2), 435–475 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Jones, M.C., Sibson, R.: What is projection pursuit? (with discussion). J. Roy. Statist. Soc. A. 150, 1–36 (1987)Google Scholar
  11. 11.
    Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Yuhui Shi. Morgan Kaufmann Publishers, San Francisco (1995)Google Scholar
  12. 12.
    Martinez, W., Martinez, A.: Computational statistics handbook with Matlab. CRC Press, Taylor and Francis Group (2001)Google Scholar
  13. 13.
    Nason, G.P.: Three-Dimensional Projection Pursuit. J. Roy. Statist. Soc. C 44, 411–430 (1995)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Peña, D., Prieto, F.: Cluster Identification using projections. J. Amer. Statist. Assoc. 96(456), 1433–1445 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Sun, J.: Some Practical aspects of exploratory Projection Pursuit. SIAM J. Sci. Comput. 14(1), 68–80 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Wu, J., Zhou, J., Gao, Y.: Support Vector Regression Based on Particle Swarm Optimization and Projection Pursuit Technology for Rainfall Forecasting. In: Int. Conf. on Computational Intelligence and Security, vol. 1, pp. 227–233 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Souad Larabi Marie-Sainte
    • 1
  • Alain Berro
    • 1
  • Anne Ruiz-Gazen
    • 2
  1. 1.IRIT-UT1, UMR 5505, CNRSUniversité Toulouse 1 - CapitoleToulouseFrance
  2. 2.Toulouse School of Economics (GREMAQ)Université Toulouse 1 - CapitoleToulouseFrance

Personalised recommendations