Protein Structure Prediction in Lattice Models with Particle Swarm Optimization

  • Andrei Băutu
  • Henri Luchian
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6234)


The protein structure prediction problem consists in finding good computational algorithms for prediction of protein native states. This paper applies the Particle Swarm Optimization (PSO) algorithm to predict the tertiary structure of proteins in lattice models. We propose a novel discrete PSO variant designed for lattice-based protein folding models. We present three lattice based models and two folding encodings, which are tested in different combinations on six proteins. The results indicate that the new algorithm performs very efficient and finds very good proteins conformations.


Particle Swarm Optimization Lattice Model Particle Swarm Optimization Algorithm Protein Structure Prediction Roulette Wheel Selection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Băutu, A., Băutu, E.: Particle Swarms in Statistical Physics, pp. 77–88. Intech Publishing (2009)Google Scholar
  2. 2.
    Băutu, A., Luchian, H.: Protein structure prediction in the 2D HP model using Particle Swarm Optimization. In: Proc. of 7th Int. Conf. on Numerical Methods and Applications (to appear)Google Scholar
  3. 3.
    Benítez, C.M.V., Lopes, H.S.: A parallel genetic algorithm for protein folding prediction using the 3D-HP side chain model. In: Proc. of CEC 2009, pp. 1297–1304. IEEE Press, Piscataway (2009)Google Scholar
  4. 4.
    Bennett, A.J., Johnston, R.L., Turpin, E., He, J.Q.: Analysis of an immune algorithm for protein structure prediction. Informatica (2008)Google Scholar
  5. 5.
    Berenboym, I., Avigal, M.: Genetic algorithms with local search optimization for protein structure prediction problem. In: Proc. of the 10th annual Conf. on Genetic and evolutionary computation, pp. 1097–1098. ACM, New York (2008)CrossRefGoogle Scholar
  6. 6.
    Berger, B., Leighton, T.: Protein folding in the hydrophobic-hydrophilic (HP) is NP-complete. In: Proc. of RECOMB 1998, pp. 30–39. ACM, New York (1998)CrossRefGoogle Scholar
  7. 7.
    van den Bergh, F., Engelbrecht, A.: A study of particle swarm optimization particle trajectories. Information Sciences 176(8), 937–971 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Clerc, M.: Particle Swarm Optimization. Hermes Science, London (2006)zbMATHCrossRefGoogle Scholar
  9. 9.
    Dill, K.A.: Dominant forces in protein folding. Biochemistry 29(31), 7133–7155 (1990)CrossRefGoogle Scholar
  10. 10.
    Dill, K.A., Ozkan, S.B., Shell, M.S., Weikl, T.R.: The protein folding problem. Annual Review of Biophysics 37(1), 289–316 (2008)CrossRefGoogle Scholar
  11. 11.
    Dill, K.A., Ozkan, S.B., Weikl, T.R., Chodera, J.D., Voelz, V.A.: The protein folding problem: when will it be solved? Current Opinion in Structural Biology 17(3), 342–346 (2007)CrossRefGoogle Scholar
  12. 12.
    Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proc. of the Sixth Int. Symp. on Micro Machine and Human Science, pp. 39–43 (1995)Google Scholar
  13. 13.
    Kapsokalivas, L., Gan, X., Albrecht, A., Steinhöfel, K.: Population-based local search for protein folding simulation in the MJ energy model and cubic lattices. Computational Biology and Chemistry 33(4), 283–294 (2009)CrossRefGoogle Scholar
  14. 14.
    Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. In: Proc. of the World Multiconf. on Systemics, Cybernetics and Informatics, vol. 5, pp. 4104–4109. IEEE Press, Piscataway (1997)Google Scholar
  15. 15.
    Krasnogor, N., Hart, W.E., Smith, J., Pelta, D.A.: Protein structure prediction with evolutionary algorithms. In: Proc. of the Genetic and Evo. Comp. Conf., vol. 2, pp. 1596–1601. Morgan Kaufmann, Orlando (1999)Google Scholar
  16. 16.
    Lin, C.J., Hsieh, M.H.: An efficient hybrid Taguchi-genetic algorithm for protein folding simulation. Expert Systems with Applications 36(10), 12446–12453 (2009)CrossRefGoogle Scholar
  17. 17.
    Liu, J., Wang, L., He, L., Shi, F.: Analysis of Toy Model for Protein Folding Based on PSO Algorithm. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC 2005. LNCS, vol. 3612, pp. 636–645. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Pérez-Hernández, L.G., Rodríguez-Vázquez, K., Garduno-Juárez, R.: Parallel PSO applied to the protein folding problem. In: Proc. of the 11th Annual Conf. on Genetic and evolutionary computation, pp. 1791–1792. ACM, New York (2009)Google Scholar
  19. 19.
    Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intelligence 1, 33–57 (2007)CrossRefGoogle Scholar
  20. 20.
    Santana, R., Larranaga, P., Lozano, J.A.: Protein folding in simplified models with EDA. IEEE Transactions on Evolutionary Computation 12(4), 418–438 (2008)CrossRefGoogle Scholar
  21. 21.
    Thachuk, C., Shmygelska, A., Hoos, H.: A replica exchange Monte Carlo algorithm for protein folding in the HP model. BMC Bioinformatics 2008(1), 342 (2007)CrossRefGoogle Scholar
  22. 22.
    Zhu, H., Pu, C., Lin, X., Gu, J., Zhang, S., Su, M.: Protein structure prediction with EPSO in Toy model. In: Proc. of ICINIS 2009, pp. 673–676. IEEE Computer Society, Washington (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Andrei Băutu
    • 1
  • Henri Luchian
    • 1
  1. 1.Faculty of Computer Science“Al. I. Cuza” UniversityIasiRomania

Personalised recommendations