Advertisement

Formal Verification of Probabilistic Swarm Behaviours

  • Savas Konur
  • Clare Dixon
  • Michael Fisher
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6234)

Abstract

Robot swarms provide a way for a number of simple robots to work together to carry out a task. While swarms have been found to be adaptable, fault-tolerant and widely applicable, designing individual robot algorithms so as to ensure effective and correct swarm behaviour is very difficult. In order to assess swarm effectiveness, either experiments with real robots or computational simulations of the swarm are usually carried out. However, neither of these involve a deep analysis of all possible behaviours. In this paper we will utilise automated formal verification techniques, involving an exhaustive mathematical analysis, in order to assess whether our swarms will indeed behave as required.

Keywords

Food Item Model Checker Real Robot Homing State Swarm Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beni, G.: From Swarm Intelligence to Swarm Robotics. In: Şahin, E., Spears, W.M. (eds.) SAB 2004. LNCS, vol. 3342, pp. 1–9. Springer, Heidelberg (2005)Google Scholar
  2. 2.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. J. Artificial Societies and Social Simulation 4(1) (2001)Google Scholar
  3. 3.
    Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  4. 4.
    Duflot, M., Kwiatkowska, M., Norman, G., Parker, D.: A Formal Analysis of Bluetooth Device Discovery. Int. J. Software Tools Techn. Transfer 8(6), 621–632 (2006)CrossRefGoogle Scholar
  5. 5.
    Hansson, H., Jonsson, B.: A Logic for Reasoning about Time and Reliability. Formal Aspects of Computing 6, 102–111 (1994)CrossRefGoogle Scholar
  6. 6.
    Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A Tool for Automatic Verification of Probabilistic Systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Labella, T.H., Dorigo, M., Deneubourg, J.L.: Efficiency and Task Allocation in Prey Retrieval. In: Ijspeert, A.J., Murata, M., Wakamiya, N. (eds.) BioADIT 2004. LNCS, vol. 3141, pp. 274–289. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Lerman, K., Galstyan, A.: Mathematical Model of Foraging in a Group of Robots: Effect of Interference. Autonomous Robots 13(2), 127–141 (2002)zbMATHCrossRefGoogle Scholar
  9. 9.
    Lerman, K., Martinoli, A., Galstyan, A.: A Review of Probabilistic Macroscopic Models for Swarm Robotic Systems. In: Şahin, E., Spears, W.M. (eds.) SAB 2004. LNCS, vol. 3342, pp. 143–152. Springer, Heidelberg (2005)Google Scholar
  10. 10.
    Liu, W., Winfield, A., Sa, J.: Modelling Swarm Robotic Systems: A Study in Collective Foraging. In: Proc. Towards Autonomous Robotic Systems (TAROS), pp. 25–32 (2007)Google Scholar
  11. 11.
    Liu, W., Winfield, A., Sa, J., Chen, J., Dou, L.: Strategies for Energy Optimisation in a Swarm of Foraging Robots. In: Şahin, E., Spears, W.M., Winfield, A.F.T. (eds.) SAB 2006 Ws 2007. LNCS, vol. 4433, pp. 14–26. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Sahin, E., Winfield, A.F.T.: Special Issue on Swarm Robotics. Swarm Intelligence 2(2-4), 69–72 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Savas Konur
    • 1
  • Clare Dixon
    • 1
  • Michael Fisher
    • 1
  1. 1.Department of Computer ScienceUniversity of LiverpoolLiverpoolUK

Personalised recommendations