Advertisement

Emergent Flocking with Low-End Swarm Robots

  • Christoph Moeslinger
  • Thomas Schmickl
  • Karl Crailsheim
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6234)

Abstract

This article analyses a flocking algorithm that was developed specifically for small and simple swarm robots. It is similar to traditional flocking algorithms for swarm robots, however it does not need communication nor global information. Its only requirements are at least 4 circumferential distance sensors which can have very limited range. This is possible because our algorithm generates emergent alignment of flock members. We show an analysis of our simulations and a short overview of a real robot experiment.

Keywords

swarm robots emergent behaviour flocking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balch, T., Hybinette, M.: Social potentials for scalable multi-robot formations, vol. 1, pp. 73–80 (2000)Google Scholar
  2. 2.
    Baldassarre, G., Nolfi, S., Parisi, D.: Evolving mobile robots able to display collective behaviors. Artificial Life 9(3), 255–267 (2003)CrossRefGoogle Scholar
  3. 3.
    Beni, G., Wang, J.: Swarm intelligence. In: Proc. of the Seventh Annual Meeting of the Robotics Society of Japan, pp. 425–428 (1989)Google Scholar
  4. 4.
    Bjerknes, J.D., Winfield, A., Melhuish, C.: An analysis of emergent taxis in a wireless connected swarm of mobile robots. In: IEEE Swarm Intelligence Symposium, pp. 45–52. IEEE Press, Los Alamitos (2007)CrossRefGoogle Scholar
  5. 5.
    Dudek, G., Jenkin, M., Milios, E., Wilkes, D.: A taxonomy for swarm robots. In: Intelligent Robots and Systems 1993, vol. 1, pp. 315–325 (1993)Google Scholar
  6. 6.
    ePuck: e-puck desktop mobile robot - website (2009), http://www.e-puck.org/
  7. 7.
    Hayes, A.T., Dormiani-Tabatabaei, P.: Self-organized flocking with agent failure: Off-line optimization and demonstration with real robots. In: Int. Conf. on Robotics and Automation, pp. 3900–3905 (2002)Google Scholar
  8. 8.
    Jasmine: Swarm robot - project website (2010), http://www.swarmrobot.org/
  9. 9.
    Kelly, I.D., Keating, D.A.: Flocking by the fusion of sonar and active infrared sensors on physical autonomous mobile robots. In: Proc. of the Third Int. Conf. on Mechatronics and Machine Vision in Practice, vol. 1, pp. 1–4 (1996)Google Scholar
  10. 10.
    Kunz, H., Hemelrijk, C.: Artificial fish schools: Collective effects of school size, body size, and body form. Artificial Life 9(3), 237–253 (2003)CrossRefGoogle Scholar
  11. 11.
    Matarić, M.J.: Designing emergent behaviors: from local interactions to collective intelligence. In: Proc. of the Second Int. Conf. on From Animals to Animats 2: simulation of adaptive behavior, pp. 432–441 (1993)Google Scholar
  12. 12.
    Moeslinger, C.: Video link (2009), http://zool33.uni-graz.at/artlife/flocking
  13. 13.
    Moeslinger, C., Schmickl, T., Crailsheim, K.: A minimalist flocking algorithm for swarm robots. LNCS. Springer, Heidelberg (2010) (in press)Google Scholar
  14. 14.
    Partridge, B.L., Pitcher, T.J.: The sensory basis of fish schools: relative roles of lateral line and vision. Journal of Comparative Physiology 135(4), 315–325 (1980)CrossRefGoogle Scholar
  15. 15.
    Quinn, M.: Evolving controllers for a homogeneous system of physical robots: structured cooperation with minimal sensors. Royal Society of London Transactions Series A 362(1811), 2321–2343 (2003)CrossRefMathSciNetGoogle Scholar
  16. 16.
    REPLICATOR: Project website (2010), http://www.replicators.eu
  17. 17.
    Reynolds, C.W.: Flocks, herds, and schools. Computer Graphics 21(4), 25–34 (1987)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Romey, W.: Individual differences make a difference in the trajectories of simulated schools of fish. Ecological Modelling 92(1), 65–77 (1996)CrossRefGoogle Scholar
  19. 19.
    Seyfried, J., Szymanski, M., Bender, N., Estaña, R., Thiel, M., Wörn, H.: The I-SWARM project: Intelligent small world autonomous robots for micro-manipulation. In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics Workshop: State-of-the-art Survey, pp. 70–83. Springer, Heidelberg (2005)Google Scholar
  20. 20.
    Swarmrobot: Project website (2009), http://www.swarmrobot.org/tiki-index.php
  21. 21.
    SYMBRION: Project website (2010), http://www.symbrion.eu
  22. 22.
    Trianni, V., Groß, R., Labella, T., Şahin, E., Dorigo, M.: Evolving aggregation behaviors in a swarm of robots. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 865–874. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  23. 23.
    Turgut, A., Çelikkanat, H., Gökçe, F., Şahin, E.: Self-organized flocking in mobile robot swarms. Swarm Intelligence 2(2), 97–120 (2008)CrossRefGoogle Scholar
  24. 24.
    Wilensky, U.: Netlogo. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Christoph Moeslinger
    • 1
  • Thomas Schmickl
    • 1
  • Karl Crailsheim
    • 1
  1. 1.Artificial Life Lab of the Department of ZoologyUniversity of GrazGrazAustria

Personalised recommendations