Advertisement

Cooperation in a Heterogeneous Robot Swarm through Spatially Targeted Communication

  • Nithin Mathews
  • Anders Lyhne Christensen
  • Rehan O’Grady
  • Marco Dorigo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6234)

Abstract

We consider a heterogeneous swarm robotic system composed of wheeled and aerial robots called foot-bots and eye-bots, respectively. The foot-bots are able to physically connect to one another autonomously and thus form collective robotic entities. Eye-bots have a privileged overview of the environment since they can fly and attach to metal ceilings. In this paper, we show how the heterogeneous swarm can benefit from cooperation. By using so-called spatially targeted communication, the eye-bot is able to communicate with selected groups of foot-bots and instruct them on how to overcome obstacles in their path by forming morphologies appropriate to the obstacle encountered. We conduct experiments in simulation to quantify separately the benefits of cooperation and of spatially targeted communication.

Keywords

Completion Time Target Zone Task Completion Time Target Communication Cooperative Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Butler, Z., Kotay, K., Rus, D., Tomita, K.: Generic decentralized control for lattice-based self-reconfigurable robots. Int. Jour. of Rob. Res. 23(9), 919–937 (2004)CrossRefGoogle Scholar
  2. 2.
    Christensen, A.L., O’Grady, R., Dorigo, M.: SWARMORPH-script: A language for arbitrary morphology generation in self-assembling robots. Swarm Intelligence 2(2-4), 143–165 (2008)CrossRefGoogle Scholar
  3. 3.
    Damoto, R., Kawakami, A., Hirose, S.: Study of super-mechano colony: concept and basic experimental set-up. Adv. Robotics 15(4), 391–408 (2001)CrossRefGoogle Scholar
  4. 4.
    Dias, M.B., Zlot, R., Kalra, N., Stentz, A.: Market-based multirobot coordination: A survey and analysis. Proc. of the IEEE 94(7), 1257–1270 (2006)CrossRefGoogle Scholar
  5. 5.
    Fukuda, T., Buss, M., Hosokai, H., Kawauchi, Y.: Cell structured robotic system CEBOT: Control, planning and communication methods. Rob. and Auton. Syst. 7(2-3), 239–248 (1991)CrossRefGoogle Scholar
  6. 6.
    Groß, R., Dorigo, M.: Self-assembly at the macroscopic scale. Proc. of the IEEE 96(9), 1490–1508 (2008)CrossRefGoogle Scholar
  7. 7.
    Gutiérrez, A., Campo, A., Dorigo, M., Amor, D., Magdalena, L., Monasterio-Huelin, F.: An open localization and local communication embodied sensor. Sensors 8(11), 7545–7563 (2008)CrossRefGoogle Scholar
  8. 8.
    Klavins, E., Ghrist, R., Lipsky, D.: A grammatical approach to self-organizing robotic systems. IEEE Trans. on Autom. Cont. 51(6), 949–962 (2006)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Mathews, N., Christensen, A.L., Ferrante, E., O’Grady, R., Dorigo, M.: Establishing spatially targeted communication in a heterogeneous robot swarm. In: 9th Int. Conf. on Auton. Agents and Multiagent Syst. (AAMAS 2010), pp. 939–946. ACM, New York (2010)Google Scholar
  10. 10.
    O’Grady, R., Christensen, A.L., Pinciroli, C., Dorigo, M.: Robots autonomously self-assemble into dedicated morphologies to solve different tasks (extended abstract). In: 9th Int. Conf. on Auton. Agents and Multiagent Syst. (AAMAS 2010), pp. 1517–1518. ACM, New York (2010)Google Scholar
  11. 11.
    O’Grady, R., Groß, R., Christensen, A.L., Dorigo, M.: Self-assembly strategies in a group of autonomous mobile robots. Auton. Robots 28(4), 439–455 (2010)CrossRefGoogle Scholar
  12. 12.
    Parker, L.: ALLIANCE: an architecture for fault tolerant multirobot cooperation. IEEE Trans. on Rob. and Autom. 14(2), 220–240 (1998)CrossRefGoogle Scholar
  13. 13.
    Pinciroli, C.: The Swarmanoid Simulator. Tech. Rep. TR/IRIDIA/2007-025, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium (2007)Google Scholar
  14. 14.
    Pinciroli, C., O’Grady, R., Christensen, A.L., Dorigo, M.: Self-organised recruitment in a heterogeneous swarm. In: 14th Int. Conf. on Adv. Rob. (ICAR 2009). Proceedings on CD-ROM, paper ID 176, p. 8 (2009)Google Scholar
  15. 15.
    Rivard, F., Bisson, J., Michaud, F., Létourneau, D.: Ultrasonic relative positioning for multi-robot systems. In: IEEE Int. Conf. on Rob. and Autom., pp. 323–328. IEEE Press, Piscataway (2008)CrossRefGoogle Scholar
  16. 16.
    Roberts, J.F., Stirling, T.S., Zufferey, J.C., Floreano, D.: 2.5d Infrared Range and Bearing System for Collective Robotics. In: IEEE/RSJ Int. Conf. on Int. Rob. and Syst. (IROS 2009). IEEE Press, Piscataway (2009)Google Scholar
  17. 17.
    Stentz, A.T., Kelly, A., Herman, H., Rander, P., Amidi, O., Mandelbaum, R.: Integrated air/ground vehicle system for semi-autonomous off-road navigation. In: AUVSI Unmanned Syst. Symp. (2002)Google Scholar
  18. 18.
    Sukhatme, G., Montgomery, J., Vaughan, R.: Experiments with aerial-ground robots. In: Robot Teams: From Diversity to Polymorphism, pp. 345–367. AK Peters, Wellesley (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Nithin Mathews
    • 1
  • Anders Lyhne Christensen
    • 2
  • Rehan O’Grady
    • 1
  • Marco Dorigo
    • 1
  1. 1.IRIDIA, CoDEUniversité Libre de BruxellesBrusselsBelgium
  2. 2.Instituto de TelecomunicaçõesLisbonPortugal

Personalised recommendations