Advertisement

A Cooperative Network Game Efficiently Solved via an Ant Colony Optimization Approach

  • Pablo Romero
  • Franco Robledo
  • Pablo Rodríguez-Bocca
  • Darío Padula
  • María Elisa Bertinat
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6234)

Abstract

In this paper, a Cooperative Network Game (CNG) is introduced. In this game, all players have the same goal: display a video content in real time, with no cuts and low buffering time. Inspired in cooperation and symmetry, all players should apply the same strategy, resulting in a fair play. For each strategy we shall define a score, and the search of the best one characterizes a Combinatorial Optimization Problem (COP). In this research we show that this search can be translated into a suitable Assymmetric Traveling Salesman Problem (ATSP). An Ant Colony Optimization (ACO) approach is defined, obtaining highly competitive solutions for the CNG. Finally, we play the game in a real context, using a new strategy in a Peer-to-Peer (P2P) platform, obtaining better results than previous strategies.

Keywords

COP ATSP ACO P2P 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beckers, R., Deneubourg, J., Goss, S.: Trails and U-turns in the selection of the shortest path by the ant lasius niger. Journal of Theoretical Biology 159, 397–415 (1992)CrossRefGoogle Scholar
  2. 2.
    Bertinat, M.E., Vera, D.D., Padula, D., Robledo, F., Rodríguez-Bocca, P., Romero, P.: Systematic procedure for improving continuity and latency on a p2p streaming protocol. To appear in Proceedings of IEEE Latin-American Conference on Communications (LatinCom 2009). IEEE, Los Alamitos (2009)Google Scholar
  3. 3.
    Bertinat, M.E., Vera, D.D., Padula, D., Robledo, F., Rodríguez-Bocca, P., Romero, P., Rubino, G.: A cop for cooperation in a p2p streaming protocol. To appear in Proceedings of International Conference in Ultra Modern Telecommunications (ICUMT 2009). IEEE, Los Alamitos (2009)Google Scholar
  4. 4.
    Bertinat, M.E., Vera, D.D., Padula, D., Robledo, F., Rodríguez-Bocca, P., Romero, P., Rubino, G.: Goalbit: The first free and open source peer-to-peer streaming network. To appear in Proceedings of the 5th international IFIP/ACM Latin American conference on Networking, pp. 49–59. ACM, New York (2009)Google Scholar
  5. 5.
    Blum, C.: Ant colony optimization: Introduction and recent trends. Physics of life Reviews 2, 353–373 (2005)CrossRefGoogle Scholar
  6. 6.
    Cohen, B.: Incentives build robustness in bittorrent, vol. 1, pp. 1–5 (May 2003), www.bramcohen.com
  7. 7.
    Dorigo, M., Birattari, M., Stützle, T.: Artificial ants as a computational intelligence technique. Tech. Rep. 23, Institut de Recherches Interdisciplinaires, Université Libre de Bruxelles (September 2006)Google Scholar
  8. 8.
    Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation 1(1), 53–66 (1997)CrossRefGoogle Scholar
  9. 9.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)zbMATHGoogle Scholar
  10. 10.
    Duan, H., Ma, G., Liu, S.: Experimental study of the adjustable parameters in basic ant colony optimization algorithm. IEEE Congress on Evolutionary Computation 1(1), 149–156 (2007)CrossRefGoogle Scholar
  11. 11.
    GoalBit - The First Free and Open Source Peer-to-Peer Streaming Network (2008), http://goalbit.sf.net/
  12. 12.
    Zhou, Y., Chiu, D.M., Lui, J.: A Simple Model for Analyzing P2P Streaming Protocols. In: Proceeding of the IEEE International Conference on Network Protocols (ICNP 2007), Beijing, China, pp. 226–235 (October 2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Pablo Romero
    • 1
  • Franco Robledo
    • 1
  • Pablo Rodríguez-Bocca
    • 1
  • Darío Padula
    • 1
  • María Elisa Bertinat
    • 1
  1. 1.Facultad de IngenieríaUniversidad de la RepúblicaUruguay

Personalised recommendations