Opinion Dynamics for Decentralized Decision-Making in a Robot Swarm

  • Marco A. Montes de Oca
  • Eliseo Ferrante
  • Nithin Mathews
  • Mauro Birattari
  • Marco Dorigo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6234)


In this paper, we study how an opinion dynamics model can be the core of a collective decision-making mechanism for swarm robotics. Our main result is that when opinions represent action choices, the opinion associated with the action that is the fastest to execute spreads in the population. Moreover, the spread of the best choice happens even when only a minority is initially advocating for it. The key elements involved in this process are consensus building and positive feedback. A foraging task that involves collective transport is used to illustrate the potential of the proposed approach.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berend, D., Chernyavsky, Y.: Ranking of decision rules with random power distribution. Mathematical and Computer Modelling 48(9-10), 1326–1334 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bonani, M., Magnenat, S., Rétornaz, P., Mondada, F.: The hand-bot, a robot design for simultaneous climbing and manipulation. In: Xie, M., Xiong, Y., Xiong, C., Liu, H., Hu, Z. (eds.) ICIRA 2009. LNCS, vol. 5928, pp. 11–22. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics. Reviews of Modern Physics 81(2), 591–646 (2009)CrossRefGoogle Scholar
  4. 4.
    Chakrabarti, B., Chakraborti, A., Chatterjee, A. (eds.): Econophysics and sociophysics: Trends and perspectives. Wiley-VCH, Wienheim (2006)Google Scholar
  5. 5.
    Ducatelle, F., Di Caro, G., Gambardella, L.M.: Cooperative self-organization in a heterogeneous swarm robotic system. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2010), pp. 87–94. ACM Press, New York (2010)CrossRefGoogle Scholar
  6. 6.
    Garnier, S., Gautrais, J., Asadpour, M., Jost, C., Theraulaz, G.: Self-organized aggregation triggers collective decision making in a group of cockroach-like robots. Adaptive Behavior 17(2), 109–133 (2009)CrossRefGoogle Scholar
  7. 7.
    Goss, S., Aron, S., Deneubourg, J.L., Pasteels, J.M.: Self-organized shortcuts in the argentine ant. Naturwissenschaften 76(12), 579–581 (1989)CrossRefGoogle Scholar
  8. 8.
    Krapivsky, P.L., Redner, S.: Dynamics of majority rule in two-state interacting spin systems. Physical Review Letters 90(23), 238701.1–238701.4 (2003)Google Scholar
  9. 9.
    Mamei, M., Zambonelli, F.: Physical deployment of digital pheromones through RFID technology. In: Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2005), pp. 1353–1354. ACM Press, New York (2005)CrossRefGoogle Scholar
  10. 10.
    Montes de Oca, M.A., Ferrante, E., Mathews, N., Birattari, M., Dorigo, M.: Opinion dynamics for decentralized decision-making in a robot swarm: Complete data (2010), Supplementary information page at
  11. 11.
    Nouyan, S., Campo, A., Dorigo, M.: Path formation in a robot swarm: Self-organized strategies to find your way home. Swarm Intelligence 2(1), 1–23 (2008)CrossRefGoogle Scholar
  12. 12.
    Nouyan, S., Groß, R., Bonani, M., Mondada, F., Dorigo, M.: Teamwork in self-organized robot colonies. IEEE Transactions on Evolutionary Computation 13(4), 695–711 (2009)CrossRefGoogle Scholar
  13. 13.
    Parker, C.A.C., Zhang, H.: Cooperative decision-making in decentralized multiple-robot systems: The best-of-N problem. IEEE/ASME Transactions on Mechatronics 14(2), 240–251 (2009)CrossRefGoogle Scholar
  14. 14.
    Payton, D., Daily, M., Estowski, R., Howard, M., Lee, C.: Pheromone robotics. Autonomous Robots 11(3), 319–324 (2001)zbMATHCrossRefGoogle Scholar
  15. 15.
    Pinciroli, C.: Object Retrieval by a Swarm of Ground Based Robots Driven by Aerial Robots. Mémoire de DEA, Université Libre de Bruxelles, Bruxelles, Belgium (2007)Google Scholar
  16. 16.
    Russell, R.A.: Ant trails – An example for robots to follow? In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 1999), pp. 2968–2703. IEEE Press, Piscataway (1999)Google Scholar
  17. 17.
    Schmickl, T., Crailsheim, K.: Trophallaxis within a robotic swarm: Bio-inspired communication among robots in a swarm. Autonomous Robots 17(2), 109–133 (2009)Google Scholar
  18. 18.
    Sugawara, K., Kazama, T., Watanabe, T.: Foraging behavior of interacting robots with virtual pheromone. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004), pp. 3074–3079. IEEE Press, Piscataway (2004)Google Scholar
  19. 19.
    Werger, B., Matarić, M.: Robotic “food” chains: Externalization of state and program for minimal-agent foraging. In: Proceedings of the International Conference on Simulation of Adaptive Behavior: From Animals to Animats (SAB 1996), pp. 625–634. MIT Press, Cambridge (1996)Google Scholar
  20. 20.
    Wessnitzer, J., Melhuish, C.: Collective decision-making and behaviour transitions in distributed ad hoc wireless networks of mobile robots: Target-hunting. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 893–902. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Marco A. Montes de Oca
    • 1
  • Eliseo Ferrante
    • 1
  • Nithin Mathews
    • 1
  • Mauro Birattari
    • 1
  • Marco Dorigo
    • 1
  1. 1.IRIDIA, CoDEUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations