Autonomous Morphogenesis in Self-assembling Robots Using IR-Based Sensing and Local Communications

  • Wenguo Liu
  • Alan F. T. Winfield
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6234)


This paper presents a simple decentralised morphology control mechanism for a swarm of self-assembling robots. Each robot in the system is fully autonomous and controlled using a behaviour-based approach with only infrared-based local sensing and communications. A graph-based recruitment strategy is proposed to guide the growth of 2D planar organisms, and local communications are used to self-organise the behaviours of robots during the morphogenesis process. The effectiveness of the approach has been verified, in simulation, for a diverse set of target structures.


Tree Data Structure Beacon Signal State Recruitment Docking Mechanism Morphogenesis Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Christensen, A., O’Grady, R., Dorigo, M.: Swarmorph-script: a language for arbitrary morphology generation in self-assembling robots. Swarm Intelligence 2(2), 143–165 (2008)CrossRefGoogle Scholar
  2. 2.
    Grushin, A., Reggia, J.A.: Automated design of distributed control rules for the self-assembly of pre-specified artificial structures. Robotics and Autonomous Systems 56(4), 334–359 (2008)CrossRefGoogle Scholar
  3. 3.
    Guo, H., Meng, Y., Jin, Y.: A cellular mechanism for multi-robot construction via evolutionary multi-objective optimization of a gene regulatory network. Biosystems 98(3), 193–203 (2009)CrossRefGoogle Scholar
  4. 4.
    Kernbach, S., Meister, E., Scholz, O., Humza, R., Liedke, J., Ricotti, L., Jemai, J., Havlik, J., Liu, W.: Evolutionary robotics: The next-generation-platform for on-line and on-board artificial evolution. In: Proc. IEEE Congress on Evolutionary Computation, Trondheim, Norway, pp. 1079–1086 (May 2009)Google Scholar
  5. 5.
    Levi, P., Kernbach, S. (eds.): Symbiotic Multi-Robot Organisms: Reliability, Adaptability, Evolution. Springer, Heidelberg (2010)zbMATHGoogle Scholar
  6. 6.
    Liu, W., Winfield, A.: Implementation of an IR approach for autonomous docking in a self-configurable robotics system. In: Proc. Towards Autonomous Robotic Systems, Londonderry, UK, pp. 251–258 (September 2009)Google Scholar
  7. 7.
    Murata, S., Kakomura, K., Kurokawa, H.: Toward a scalable modular robotic system. IEEE Robotics Automation Magazine 14(4), 56–63 (2007)CrossRefGoogle Scholar
  8. 8.
    Rubenstein, M., Payne, K., Will, P., Shen, W.M.: Docking among independent and autonomous CONRO self-reconfigurable robots. In: Proc. IEEE International Conference on Robotics and Automation, vol. 3, pp. 2877–2882 (May 2004)Google Scholar
  9. 9.
    Salemi, B., Moll, M., Shen, W.M.: SUPERBOT: A deployable, multi-functional, and modular self-reconfigurable robotic system. In: Proc. Int. Conf. on Intelligent Robots and Systems, Beijing, China, pp. 3636–3641 (October 2006)Google Scholar
  10. 10.
    Shen, W.M., Salemi, B., Will, P.: Hormone-inspired adaptive communication and distributed control for CONRO self-reconfigurable robots. IEEE Transactions on Robotics and Automation 18(5), 700–712 (2002)CrossRefGoogle Scholar
  11. 11.
    Støy, K.: Using cellular automata and gradients to control self-reconfiguration. Robotics and Autonomous Systems 54, 135–141 (2006)CrossRefGoogle Scholar
  12. 12.
    Vaughan, R.: Massively multi-robot simulation in stage. Swarm Intelligence 2(2-4), 189–208 (2008)CrossRefGoogle Scholar
  13. 13.
    Yim, M., Zhang, Y., Roufas, K., Duff, D., Eldershaw, C.: Connecting and disconnecting for chain self-reconfiguration with Polybot. IEEE/ASME Transactions on Mechatronics 7(4), 442–451 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Wenguo Liu
    • 1
  • Alan F. T. Winfield
    • 1
  1. 1.Bristol Robotics LaboratoryUniversity of the West of EnglandBristolUK

Personalised recommendations