Advertisement

A Geom/G/1/n Queueing System with LIFO Discipline, Service Interruptions and Repeat Again Service, and Restrictions on the Total Volume of Demands

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6235)

Abstract

Consideration is given to a discrete-time queueing system with inverse discipline, service interruption and repeat again service, second-order geometrical demand arrival, arbitrary (discrete) distribution of demand length and finite storage. Each demand entering the queue has random volume besides its length. The total volume of the demands in the queue is limited by a certain number. Formulae for the stationary probabilities of states and the stationary waiting time distribution in the queuing system are obtained.

Keywords

Queueing system discrete time finite buffer the demand length and volume 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Romm, E.L., Skitovich, V.V.: On One Generalization of the Erlang Problem. Avtomatika i Telemekhanika 6, 164–167 (1971)Google Scholar
  2. 2.
    Alexandrov, A.M., Katz, B.A.: Serving heterogeneous customer flows. Izvestiya AN SSSR. Tekhnicheskaya Kibernetika 2, 47–53 (1973)Google Scholar
  3. 3.
    Tikhonenko, O.M.: Queueing models in data processing systems. Izdatel’stvo Universitetskoe, Minsk (1990)Google Scholar
  4. 4.
    Pechinkin, A.V., Pechinkina, O.A.: An M k/G/1/n system with LIFO discipline and constraints on the total number of customers. Vestnik Rossiyskogo Universiteta Druzhby Narodov. Ser. Prikladnaya Matematika i Informatika  1, 86–93 (1996)Google Scholar
  5. 5.
    Pechinkin, A.V.: Queueing system with LIFO discipline and constraints on the total number of customers. Vestnik Rossiyskogo Universiteta Druzhby Narodov, Ser. Prikladnaya Matematika i Informatika 2, 85–99 (1996)Google Scholar
  6. 6.
    Pechinkin, A.V.: M l/G/1/n system with LIFO discipline and constrained total amount of items. Automation and Remote Control 4, 545–553 (1998)MathSciNetGoogle Scholar
  7. 7.
    Abramushkina, T.V., Aparina, S.V., Kuznetsova, E.N., Pechinkin, A.V.: Numerical techniques for calculating stationary probabilities of states of M/G/1/n system with LIFO PR discipline and constraints on the total number of customers. Vestnik Rossiyskogo Universiteta Druzhby Narodov, Ser. Prikladnaya Matematika i Informatika 1, 40–47 (1998)Google Scholar
  8. 8.
    Bocharov, P.P., D’Apice, C., Pechinkin, A.V., Salerno, S.: Queueing theory. Modern Probability and Statistics. VSP Publishing, Utrecht (2004)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Institute of Informatics ProblemsRussian Academy of SciencesMoscowRussia

Personalised recommendations