Optimizing Voronoi Diagrams for Polygonal Finite Element Computations

  • Daniel Sieger
  • Pierre Alliez
  • Mario Botsch


We present a 2D mesh improvement technique that optimizes Voronoi diagrams for their use in polygonal finite element computations. Starting from a centroidal Voronoi tessellation of the simulation domain we optimize the mesh by minimizing a carefully designed energy functional that effectively removes the major reason for numerical instabilities—short edges in the Voronoi diagram. We evaluate our method on a 2D Poisson problem and demonstrate that our simple but effective optimization achieves a significant improvement of the stiffness matrix condition number.


Voronoi Diagram Delaunay Triangulation Voronoi Cell Short Edge Mesh Optimization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alliez, P., Cohen-Steiner, D., Yvinec, M., Desbrun, M.: Variational tetrahedral meshing. ACM Transactions on Graphics 24(3), 617–625 (2005)CrossRefGoogle Scholar
  2. 2.
    Antani, L., Delage, C., Alliez, P.: Mesh sizing with additively weighted Voronoi diagrams. In: Proceedings of the 16th International Meshing Roundtable, pp. 335–346 (2007)Google Scholar
  3. 3.
    Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., Van der Vorst, H.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd edn. SIAM, Philadelphia (1994)Google Scholar
  4. 4.
    Bathe, K.J.: Finite Element Procedures, 2nd edn. Prentice Hall, Englewood Cliffs (1995)Google Scholar
  5. 5.
    Bossen, F.J., Heckbert, P.S.: A pliant method for anisotropic mesh generation. In: Proceedings of 5th International Meshing Roundtable, pp. 63–74 (1996)Google Scholar
  6. 6.
    Chen, Y., Davis, T., Hager, W., Rajamanickam, S.: Algorithm 887: Cholmod, supernodal sparse cholesky factorization and update/downdate. ACM Transactions on Mathematical Software 35(3), 1–14 (2008)CrossRefGoogle Scholar
  7. 7.
    Cheng, S.W., Dey, T.K., Levine, J.: A Practical Delaunay Meshing Algorithm for a Large Class of Domains. In: Proc. of the 16th Int. Meshing Roundtable, pp. 477–494 (2007)Google Scholar
  8. 8.
    Chentanez, N., Alterovitz, R., Ritchie, D., Cho, L., Hauser, K.K., Goldberg, K., Shewchuk, J.R., O’Brien, J.F.: Interactive simulation of surgical needle insertion and steering. ACM Transactions on Graphics 28(3), 1–88 (2009)CrossRefGoogle Scholar
  9. 9.
    Erten, H., Üngör, A.: Triangulations with locally optimal steiner points. In: SGP 2007: Eurographics Symposium on Geometry Processing, pp. 143–152 (2007)Google Scholar
  10. 10.
    Erten, H., Üngör, A., Zhao, C.: Mesh smoothing algorithms for complex geometric domains. In: Proceedings of 18th International Meshing Roundtable, pp. 175–193 (2009)Google Scholar
  11. 11.
    Fabri, A., Giezeman, G., Kettner, L., Schirra, S.: On the design of CGAL a computational geometry algorithms library. Software Practice and Experience 30(11), 1167–1202 (2000)zbMATHCrossRefGoogle Scholar
  12. 12.
    Floater, M.S.: Mean value coordinates. Computer Aided Geometric Design 20(1), 19–27 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Floater, M.S., Kos, G., Reimers, M.: Mean value coordinates in 3D. Computer Aided Geometric Design 22, 623–631 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Gill, P.R., Murray, W., Wright, M.H.: Practical Optimization. Academic Press, London (1981)zbMATHGoogle Scholar
  15. 15.
    Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins University Press, Baltimore (1989)zbMATHGoogle Scholar
  16. 16.
    Hirani, A.N.: Discrete Exterior Calculus. PhD thesis, California Institute of Technology (2003)Google Scholar
  17. 17.
    Hiyoshi, H., Sugihara, K.: Two generalizations of an interpolant based on Voronoi diagrams. International Journal of Shape Modeling 5(2), 219–231 (1999)CrossRefGoogle Scholar
  18. 18.
    Hormann, K., Floater, M.S.: Mean value coordinates for arbitrary planar polygons. ACM Transactions on Graphics 25(4), 1424–1441 (2006)CrossRefGoogle Scholar
  19. 19.
    Hormann, K., Sukumar, N.: Maximum entropy coordinates for arbitrary polytopes. Computer Graphics Forum 27(5), 1513–1520 (2008)CrossRefGoogle Scholar
  20. 20.
    Hughes, T.J.R.: The Finite Element Method. Dover Publications, Mineola (2000)zbMATHGoogle Scholar
  21. 21.
    Joshi, P., Meyer, M., DeRose, T., Green, B., Sanocki, T.: Harmonic coordinates for character articulation. ACM Transactions on Graphics 26(3), 71 (2007)CrossRefGoogle Scholar
  22. 22.
    Klingner, B.W., Shewchuk, J.R.: Agressive tetrahedral mesh improvement. In: Proceedings of the 16th International Meshing Roundtable, pp. 3–23 (2007)Google Scholar
  23. 23.
    Liu, Y., Wang, W., Lévy, B., Sun, F., Yan, D.-M., Lu, L., Yang, C.: On centroidal voronoi tessellation—energy smoothness and fast computation. ACM Trans. on Graphics 28(4), 1–17 (2009)CrossRefGoogle Scholar
  24. 24.
    Manhães de Castro, P.M., Tournois, J., Alliez, P., Devillers, O.: Filtering relocations on a delaunay triangulation. Computer Graphics Forum (Symp. on Geometry Processing) 28(5), 1465–1474 (2009)CrossRefGoogle Scholar
  25. 25.
    Martin, S., Kaufmann, P., Botsch, M., Wicke, M., Gross, M.: Polyhedral finite elements using harmonic basis functions. Computer Graphics Forum 27(5), 1521–1529 (2008)CrossRefGoogle Scholar
  26. 26.
    O’Brien, J.F., Bargteil, A.W., Hodgins, J.K.: Graphical modeling and animation of ductile fracture. ACM Transactions on Graphics, 291–294 (2002)Google Scholar
  27. 27.
    O’Brien, J.F., Hodgins, J.K.: Graphical modeling and animation of brittle fracture. In: Proceedings of ACM SIGGRAPH 1999, pp. 137–146 (1999)Google Scholar
  28. 28.
    Shewchuk, J.R.: Delaunay Refinement Mesh Generation. PhD thesis, Carnegie Mellon University, Pittsburg (1997)Google Scholar
  29. 29.
    Shewchuk, J.R.: Delaunay refinement algorithms for triangular mesh generation. Computational Geometry 22, 21–74 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Shewchuk, J.R.: What is a good linear finite element? Interpolation, conditioning, anisotropy, and quality measures. Unpublished Preprint (2002)Google Scholar
  31. 31.
    Sukumar, N.: Construction of polygonal interpolants: A maximum entropy approach. International Journal for Numerical Methods in Engineering 61(12), 2159–2181 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Sukumar, N., Bolander, J.E.: Voronoi-based interpolants for fracture modelling. Tessellations in the Sciences; Virtues, Techniques and Applications of Geometric Tilings (2009)Google Scholar
  33. 33.
    Sukumar, N., Malsch, E.A.: Recent advances in the construction of polygonal finite element interpolants. Archives of Computational Methods in Engineering 13(1), 129–163 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Sukumar, N., Tabarraei, A.: Conforming polygonal finite elements. International Journal for Numerical Methods in Engineering 61(12), 2045–2066 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Sukumar, N., Tabarraei, A.: Numerical formulation and application of polygonal finite elements. In: Proceedings of the Seventh International ESAFORM Conference on Material Forming, pp. 73–76 (2004)Google Scholar
  36. 36.
    Tabarraei, A., Sukumar, N.: Application of polygonal finite elements in linear elasticity. International Journal of Computational Methods 3(4), 503–520 (2006)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Talischi, C., Paulino, G., Pereira, A.: Polygonal finite elements for topology optimization: A unifying paradigm. International Journal for Numerical Methods in Engineering 82(6), 671–698 (2010)zbMATHGoogle Scholar
  38. 38.
    Tournois, J., Alliez, P., Devillers, O.: Interleaving Delaunay refinement and optimization for 2D triangle mesh generation. In: Proceedings of the 16th International Meshing Roundtable, pp. 83–101 (2007)Google Scholar
  39. 39.
    Tournois, J., Wormser, C., Alliez, P., Desbrun, M.: Interleaving Delaunay refinement and optimization for practical isotropic tetrahedron mesh generation. ACM Transactions on Graphics 28(3), 1–75 (2009)CrossRefGoogle Scholar
  40. 40.
    VanderZee, E., Hirani, A.N., Guoy, D., Ramos, E.: Well-centered planar triangulation – an iterative approach. In: Proceedings of the 16th International Meshing Roundtable, pp. 121–138 (2007)Google Scholar
  41. 41.
    VanderZee, E., Hirani, A.N., Guoy, D., Ramos, E.: Well-centered triangulation. SIAM Journal on Scientific Computing 31(6), 4497–4523 (2010)CrossRefMathSciNetGoogle Scholar
  42. 42.
    Wachspress, E.L.: A Rational Finite Element Basis. Academic Press, London (1975)zbMATHGoogle Scholar
  43. 43.
    Wicke, M., Botsch, M., Gross, M.: A finite element method on convex polyhedra. Computer Graphics Forum 26, 355–364 (2007)CrossRefGoogle Scholar
  44. 44.
    Wicke, M., Ritchie, D., Klingner, B., Burke, S., Shewchuk, J.R., O’Brien, J.F.: Dynamic local remeshing for elastoplastic simulation. ACM Transactions on Graphics 29(3) (2010) (to appear)Google Scholar
  45. 45.
    Wojtan, C., Thürey, N., Gross, M., Turk, G.: Deforming meshes that split and merge. ACM Transactions on Graphics 28(3), 76:1–76:10 (2009)CrossRefGoogle Scholar
  46. 46.
    Wojtan, C., Turk, G.: Fast viscoelastic behavior with thin features. ACM Transactions on Graphics 27(3), 47:1–47:8 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Daniel Sieger
    • 1
  • Pierre Alliez
    • 2
  • Mario Botsch
    • 1
  1. 1.Bielefeld UniversityGermany
  2. 2.INRIA Sophia-AntipolisFrance

Personalised recommendations