Making Adaptive an Interval Constraint Propagation Algorithm Exploiting Monotonicity

  • Ignacio Araya
  • Gilles Trombettoni
  • Bertrand Neveu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6308)


A new interval constraint propagation algorithm, called MOnotonic Hull Consistency (Mohc), has recently been proposed. Mohc exploits monotonicity of functions to better filter variable domains. Embedded in an interval-based solver, Mohc shows very high performance for solving systems of numerical constraints (equations or inequalities) over the reals. However, the main drawback is that its revise procedure depends on two user-defined parameters.

This paper reports a rigourous empirical study resulting in a variant of Mohc that avoids a manual tuning of the parameters. In particular, we propose a policy to adjust in an auto-adaptive way, during the search, the parameter sensitive to the monotonicity of the revised function.


Search Tree Binary Search Application Frequency Interval Arithmetic Multiple Occurrence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Araya, I.: Exploiting Common Subexpressions and Monotonicity of Functions for Filtering Algorithms over Intervals. PhD thesis, University of Nice–Sophia (2010)Google Scholar
  2. 2.
    Araya, I., Trombettoni, G., Neveu, B.: Exploiting Monotonicity in Interval Constraint Propagation. In: Proc. AAAI (to appear, 2010)Google Scholar
  3. 3.
    Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.-F.: Revising Hull and Box Consistency. In: Proc. ICLP, pp. 230–244 (1999)Google Scholar
  4. 4.
    Chabert, G.: Ibex – An Interval Based EXplorer (2010),
  5. 5.
    Collavizza, H., Delobel, F., Rueher, M.: Comparing Partial Consistencies. Reliable Comp. 5(3), 213–228 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Jaulin, L.: Interval Constraint Propagation with Application to Bounded-error Estimation. Automatica 36, 1547–1552 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht (1996)zbMATHGoogle Scholar
  8. 8.
    Kieffer, M., Jaulin, L., Walter, E., Meizel, D.: Robust Autonomous Robot Localization Using Interval Analysis. Reliable Computing 3(6), 337–361 (2000)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Lhomme, O.: Consistency Tech. for Numeric CSPs. In: IJCAI, pp. 232–238 (1993)Google Scholar
  10. 10.
    Merlet, J.-P.: Interval Analysis and Robotics. In: Symp. of Robotics Research (2007)Google Scholar
  11. 11.
    Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)zbMATHGoogle Scholar
  12. 12.
    Rueher, M., Goldsztejn, A., Lebbah, Y., Michel, C.: Capabilities of Constraint Programming in Rigorous Global Optimization. In: NOLTA (2008)Google Scholar
  13. 13.
    Trombettoni, G., Chabert, G.: Constructive Interval Disjunction. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 635–650. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Van Hentenryck, P., Michel, L., Deville, Y.: Numerica: A Modeling Language for Global Optimization. MIT Press, Cambridge (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ignacio Araya
    • 1
  • Gilles Trombettoni
    • 1
  • Bertrand Neveu
    • 1
  1. 1.UTFSM (Chile), INRIA, Univ. Nice–Sophia, Imagine LIGM Univ. Paris–Est(France)

Personalised recommendations