Advertisement

Improving the Floating Point Addition and Subtraction Constraints

  • Bruno Marre
  • Claude Michel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6308)

Abstract

Solving constraints over the floating point numbers is a key issue in the process of software validation and verification. Techniques to solve such constraints on the basis of projection functions have been successfully developed. However, though correct, this approach can lead to slow convergence phenomena for very common constraints like addition and subtraction constraints. In this paper, we introduce new addition and subtraction constraints which, thanks to a new floating point subtraction property, directly compute optimal bounds for the domain of the variables at a low cost. Preliminary experiments have shown that these constraints can drastically speed up the filtering process.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Botella, B., Gotlieb, A., Michel, C.: Symbolic execution of floating-point computations. Softw. Test., Verif. Reliab. 16(2), 97–121 (2006)CrossRefGoogle Scholar
  2. 2.
    Collavizza, H., Rueher, M., Hentenryck, P.: CPBPV: a constraint-programming framework for bounded program verification. Constraints 15(2), 238–264 (2010)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Marre, B., Blanc, B.: Test selection strategies for lustre descriptions in gatel. Electr. Notes Theor. Comput. Sci. 111, 93–111 (2005)CrossRefGoogle Scholar
  4. 4.
    Michel, C.: Exact projection functions for floating point number constraints. In: AMAI (2002)Google Scholar
  5. 5.
    Michel, C., Rueher, M., Lebbah, Y.: Solving constraints over floating-point numbers. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 524–538. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Sterbenz, P.: Floating point computations. Prentice-Hall, Englewood Cliffs (1974)Google Scholar
  7. 7.
    Williams, N., Marre, B., Mouy, P., Roger, M.: Pathcrawler: Automatic generation of path tests by combining static and dynamic analysis. In: Dal Cin, M., Kaâniche, M., Pataricza, A. (eds.) EDCC 2005. LNCS, vol. 3463, pp. 281–292. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Bruno Marre
    • 1
  • Claude Michel
    • 2
  1. 1.CEA, LISTGif-sur-YvetteFrance
  2. 2.I3S (CNRS/UNSA)Sophia Antipolis Cedex

Personalised recommendations