Including Ordinary Differential Equations Based Constraints in the Standard CP Framework

  • Alexandre Goldsztejn
  • Olivier Mullier
  • Damien Eveillard
  • Hiroshi Hosobe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6308)

Abstract

Coupling constraints and ordinary differential equations has numerous applications. This paper shows how to introduce constraints involving ordinary differential equations into the numerical constraint satisfaction problem framework in a natural and efficient way. Slightly adapted standard filtering algorithms proposed in the numerical constraint satisfaction problem framework are applied to these constraints leading to a branch and prune algorithm that handles ordinary differential equations based constraints. Preliminary experiments are presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Raïssi, T., Ramdani, N., Candau, Y.: Set membership state and parameter estimation for systems described by nonlinear differential equations. Automatica 40(10), 1771–1777 (2004)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Granvilliers, L., Cruz, J., Barahona, P.: Parameter estimation using interval computations. SIAM J. Sci. Comput. 26(2), 591–612 (2005)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Kapela, T., Simó, C.: Computer assisted proofs for nonsymmetric planar choreographies and for stability of the eight. Nonlinearity 20(5), 1241 (2007)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Lin, Y., Stadtherr, M.A.: Guaranteed state and parameter estimation for nonlinear continuous-time systems with bounded-error measurements. Industrial & Engineering Chemistry Research 46(22), 7198–7207 (2007)CrossRefGoogle Scholar
  5. 5.
    Johnson, T., Tucker, W.: Brief paper: Rigorous parameter reconstruction for differential equations with noisy data. Automatica 44(9), 2422–2426 (2008)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Lin, Y., Enszer, J.A., Stadtherr, M.A.: Enclosing all solutions of two-point boundary value problems for odes. Computers & Chemical Engineering 32(8), 1714–1725 (2008)CrossRefGoogle Scholar
  7. 7.
    Cruz, J., Barahona, P.: Constraint Satisfaction Differential Problems. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 259–273. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Cruz, J., Barahona, P.: Constraint reasoning in deep biomedical models. Artificial Intelligence in Medicine 34(1), 77–88 (2005)CrossRefGoogle Scholar
  9. 9.
    Moore, R.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)MATHGoogle Scholar
  10. 10.
    Neumaier, A.: Interval Methods for Systems of Equations. Cambridge Univ. Press, Cambridge (1990)MATHGoogle Scholar
  11. 11.
    Benhamou, F., Older, W.: Applying Interval Arithmetic to Real, Integer and Boolean Constraints. Journal of Logic Programming 32(1), 1–24 (1997)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Van Hentenryck, P., McAllester, D., Kapur, D.: Solving polynomial systems using a branch and prune approach. SIAM J. Numer. Anal. 34(2), 797–827 (1997)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Granvilliers, L.: A symbolic-numerical branch and prune algorithm for solving non-linear polynomial systems. Journal of Universal Computer Science 4(2), 125–146 (1998)MATHMathSciNetGoogle Scholar
  14. 14.
    Goldsztejn, A., Goualard, F.: Box Consistency through Adaptive Shaving. In: Proc. of ACM SAC 2010, pp. 2049–2054 (2010)Google Scholar
  15. 15.
    Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Springer, Heidelberg (2000)Google Scholar
  16. 16.
    Nedialkov, N.S., Jackson, K.R., Corliss, G.F.: Validated Solutions of Initial Value Problems for Ordinary Differential Equations. Applied Mathematics and Computation 105(1), 21–68 (1999)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Janssen, M., Deville, Y., Hentenryck, P.V.: Multistep filtering operators for ordinary differential equations. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 246–260. Springer, Heidelberg (1999)Google Scholar
  18. 18.
    Zgliczynski, P.: C1-Lohner Algorithm. Foundations of Computational Mathematics 2(4), 429–465 (2002)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Goldsztejn, A., Hayes, W.: Reliable Inner Approximation of the Solution Set to Initial Value Problems with Uncertain Initial Value. In: Proceedings of SCAN 2006, p. 19. IEEE Press, Los Alamitos (2006)Google Scholar
  20. 20.
    Goldsztejn, A., Michel, C., Rueher, M.: Efficient Handling of Universally Quantified Inequalities. Constraints 14(1), 117–135 (2008)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Goldsztejn, A., Granvilliers, L.: A New Framework for Sharp and Efficient Resolution of NCSP with Manifolds of Solutionss. Constraints 15(2), 190–212 (2010)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Eveillard, D., Ropers, D., de Jong, H., Branlant, C., Bockmayr, A.: A multi-scale constraint programming model of alternative splicing regulation. Theor. Comput. Sci. 325(1), 3–24 (2004)MATHCrossRefGoogle Scholar
  23. 23.
    Carlson, B., Gupta, V.: Hybrid cc with interval constraints. In: HSCC 1998: Proceedings of the First International Workshop on Hybrid Systems, pp. 80–95 (1998)Google Scholar
  24. 24.
    Gupta, V., Jagadeesan, R., Saraswat, V.A.: Computing with continuous change. Sci. Comput. Program. 30(1-2), 3–49 (1998)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Kuzmic, P.: Program DYNAFIT for the Analysis of Enzyme Kinetic Data: Application to HIV Proteinase. Analytical Biochemistry 237(2), 260–273 (1996)CrossRefGoogle Scholar
  26. 26.
    Mendes, P., Kell, D.: Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics 14(10), 869–883 (1998)CrossRefGoogle Scholar
  27. 27.
    Lin, Y., Stadtherr, M.A.: Validated solutions of initial value problems for parametric odes. Applied Numerical Mathematics 57(10), 1145–1162 (2007)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Hlavácek, V., Marek, M., Kubícek, M.: Modelling of chemical reactors – X multiple solutions of enthalpy and mass balances for a catalytic reaction within a porous catalyst particle. Chemical Engineering Science 23(9), 1083–1097 (1968)CrossRefGoogle Scholar
  29. 29.
    Chen, Y.: Dynamic systems optimization. Ph. D. Thesis, University of California (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Alexandre Goldsztejn
    • 2
  • Olivier Mullier
    • 1
    • 3
  • Damien Eveillard
    • 1
  • Hiroshi Hosobe
    • 3
  1. 1.University of Nantes, CNRS, LINA (UMR 6241)NantesFrance
  2. 2.CNRS, LINA (UMR 6241)NantesFrance
  3. 3.National Institute of InformaticsTokyoJapan

Personalised recommendations