Advertisement

Propagating the Bin Packing Constraint Using Linear Programming

  • Hadrien Cambazard
  • Barry O’Sullivan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6308)

Abstract

The state-of-the-art global constraint for bin packing is due to Shaw. We compare two linear continuous relaxations of the bin packing problem, based on the DP-flow and Arc-flow models, with the filtering of the bin packing constraint. Our experiments show that we often obtain significant improvements in runtime. The DP-flow model is a novel formulation of the problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clautiaux, F., Alves, C., de Carvalho, J.M.V.: A survey of dual-feasible and superadditive functions. Annals of Operations Research (2008)Google Scholar
  2. 2.
    de Carvalho, J.M.V.: Exact solution of bin-packing problems using column generation and branch-and-bound. Annals of Operations Research 86, 629–659 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    de Carvalho, J.M.V.: LP models for bin packing and cutting stock problems. European Journal of Operational Research 141(2), 253–273 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Falkenauer, E.: A hybrid grouping genetic algorithm for bin packing. Journal of Heuristics 2, 5–30 (1996)CrossRefGoogle Scholar
  5. 5.
    Hooker, J.N.: Integrated Methods for Optimization. International Series in Operations Research & Management Science. Springer, New York (2006)Google Scholar
  6. 6.
    Hooker, J.N., Yan, H.: A relaxation of the cumulative constraint. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 686–690. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Martello, S., Toth, P.: Lower bounds and reduction procedures for the bin packing problem. Discrete Appl. Math. 28(1), 59–70 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Scholl, A., Klein, R., Jürgens, C.: Bison: A fast hybrid procedure for exactly solving the one-dimensional bin packing problem. Computers and Operations Research 24(7), 627–645 (1997)zbMATHCrossRefGoogle Scholar
  9. 9.
    Shaw, P.: A constraint for bin packing. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 648–662. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Trick, M.A.: A dynamic programming approach for consistency and propagation for knapsack constraints. Annals OR 118(1-4), 73–84 (2003)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Hadrien Cambazard
    • 1
  • Barry O’Sullivan
    • 1
  1. 1.Cork Constraint Computation Centre, Department of Computer ScienceUniversity College CorkIreland

Personalised recommendations