Finding Inner Copy Communities Using Social Network Analysis

  • Eduardo Merlo
  • Sebastián A. Ríos
  • Héctor Álvarez
  • Gaston L’Huillier
  • Juan D. Velásquez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6277)


Nowadays, the technology usage is a massive practice where internet and digital documents are considered as powerful tools in both professional and personal domains. Although, as useful as they can be in a proper way, wrong practices can appear easily, where the copy & paste or plagiarism phenomenon is not far away from this. Documents’ copy & paste is a world-wide growing practice, and Chile is not the exception. Therefore, all levels of educational fields, from elementary school to graduate students, are directly affected by this. Regarding to this concern, in Chile it’s been decided to tackle the plagiarism problem among students. For this, we apply Social Network Analysis to discover groups of people associated to each other by their documents’ similarity in a plagiarism detection context. Experiments were successfully performed in real reports of graduate students at University of Chile.


Social Network Analysis Copy Detection Site Source Plagiarism Detection Massive Practice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Batagelj, V., Mrvar, A.: Network analysis of texts. In: Erjavec, T., Gros, J. (eds.) Proc. of the 5th International Multi-Conference Information Society - Language Technologies, pp. 143–148 (2002)Google Scholar
  2. 2.
    Brin, S., Davis, J., García-Molina, H.: Copy detection mechanisms for digital documents. In: SIGMOD 1995: Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data, pp. 398–409. ACM, New York (1995)CrossRefGoogle Scholar
  3. 3.
    Ceska, Z.: The future of copy detection techniques. In: Proceedings of the 1st Young Researchers Conference on Applied Sciences (YRCAS 2007), Pilsen, Czech Republic, pp. 5–107 (November 2007)Google Scholar
  4. 4.
    Ceska, Z.: Plagiarism detection based on singular value decomposition. In: Nordström, B., Ranta, A. (eds.) GoTAL 2008. LNCS (LNAI), vol. 5221, pp. 108–119. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    de Nooy, W., Mrvar, A., Batagelj, V.: Exploratory Social Network Analysis with Pajek. Cambridge University Press, New York (2004)Google Scholar
  6. 6.
    Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf. Process. Lett. 31(1), 7–15 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kang, N., Gelbukh, A.F., Han, S.-Y.: Ppchecker: Plagiarism pattern checker in document copy detection. In: Sojka, P., Kopeček, I., Pala, K. (eds.) TSD 2006. LNCS (LNAI), vol. 4188, pp. 661–667. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Maurer, H., Kulathuramaiyer, N.: Coping with the copy-paste-syndrome. In: Bastiaens, T., Carliner, S. (eds.) Proceedings of World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education 2007, Quebec City, Canada, pp. 1071–1079. AACE (October 2007)Google Scholar
  9. 9.
    Musiał, K., Kazienko, P., Bródka, P.: User position measures in social networks. In: SNA-KDD 2009: Proceedings of the 3rd Workshop on Social Network Mining and Analysis, pp. 1–9. ACM, New York (2009)CrossRefGoogle Scholar
  10. 10.
    Potthast, M., Stein, B., Eiselt, A., Barrón-Cedeño, A., Rosso, P.: Overview of the 1st International Competition on Plagiarism Detection. In: Stein, B., Rosso, P., Stamatatos, E., Koppel, M., Agirre, E. (eds.) SEPLN 2009 Workshop on Uncovering Plagiarism, Authorship, and Social Software Misuse (PAN 2009), pp. 1–9 (September 2009),
  11. 11.
    Ríos, S.A., Aguilera, F., Guerrero, L.A.: Virtual communities of practice’s purpose evolution analysis using a concept-based mining approach. In: Velásquez, J.D., Ríos, S.A., Howlett, R.J., Jain, L.C. (eds.) Knowledge-Based and Intelligent Information and Engineering Systems. LNCS, vol. 5712, pp. 480–489. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Schleimer, S., Wilkerson, D.S., Aiken, A.: Winnowing: local algorithms for document fingerprinting. In: Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, pp. 76–85. ACM, New York (2003)CrossRefGoogle Scholar
  13. 13.
    Seo, J., Croft, W.B.: Local text reuse detection. In: SIGIR 2008: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 571–578. ACM, New York (2008)CrossRefGoogle Scholar
  14. 14.
    Thimbleby, H., Oladimeji, P.: Social network analysis and interactive device design analysis. In: EICS 2009: Proceedings of the 1st ACM SIGCHI Symposium on Engineering Interactive Computing Systems, pp. 91–100. ACM, New York (2009)CrossRefGoogle Scholar
  15. 15.
    Vandehey, M.A., Diekhoff, G.M., LaBeff, E.E.: College cheating: A twenty-year follow-up and the addition of an honor code. Journal of College Student Development, 468–480 (2007)Google Scholar
  16. 16.
    Eissen, S.M.z., Stein, B.: Intrinsic plagiarism detection. In: Lalmas, M., MacFarlane, A., Rüger, S.M., Tombros, A., Tsikrika, T., Yavlinsky, A. (eds.) ECIR 2006. LNCS, vol. 3936, pp. 565–569. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Eduardo Merlo
    • 1
  • Sebastián A. Ríos
    • 1
  • Héctor Álvarez
    • 1
  • Gaston L’Huillier
    • 1
  • Juan D. Velásquez
    • 1
  1. 1.Department of Industrial EngineeringUniversity of Chile 

Personalised recommendations