Rapid Evaluation of Reconfigurable Robots Anatomies Using Computational Intelligence

  • Harry Valsamos
  • Vassilis Moulianitis
  • Nikos Aspragathos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6277)

Abstract

Designing a reconfigurable manufacturing robotic workcell is a complex and resource demanding procedure. In this work a multi criteria index is introduced, allowing the designer to evaluate the various anatomies achieved by a reconfigurable manipulator, and to define the area in the manipulator’s configuration space where a task can be accomplished with good performance under the selected performance measure. An adaptive neuro-fuzzy inference system is trained, in order to rapidly produce the index value for arbitrary anatomies achieved by the manipulator. The system is tested using a case study reconfigurable manipulator, and the derived results determined by the system after its training are presented and compared to the actual index value for calculated for the relevant anatomy.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Petiot, J., Chedmail, P., Hascoet, J.: Contribution to the Scheduling of Trajectories in Robotics. Robotics and Computer Integrated Manufacturing 14, 237–251 (1998)CrossRefGoogle Scholar
  2. 2.
    Zacharia, P.T., Aspragathos, N.A.: Optimal Robot Task Scheduling based on Genetic Algorithms. Robotics and Computer – Integrated Manufacturing 21(1), 67–79 (2005)CrossRefGoogle Scholar
  3. 3.
    Dissanayake, M., Gal, J.: Workstation planning for Redundant Manipulators. Int. J. Production Research 32(5), 1105–1118 (1994)MATHCrossRefGoogle Scholar
  4. 4.
    Aspragathos, N., Foussias, S.: Optimal location of a robot path when considering velocity performance. Robotica 20, 139–147 (2002)CrossRefGoogle Scholar
  5. 5.
    Hoepf, M., Valsamos, H.: Research Topics in Manufacturing – The I*PROMS Delphi Study. In: IEEE INDIN 2008 Conference on Industrial Informatics (2008)Google Scholar
  6. 6.
    Paredis, C., Brown, B., Khosla, P.: A rapidly deployable manipulator system. In: Proceedings of the International Conference on Robotics and Automation, pp. 1434–1439 (1996)Google Scholar
  7. 7.
    Badescu, M.: Reconfigurable Robots Using Parallel Platforms as Modules. PhD Thesis, The State University of New Jersey (2003)Google Scholar
  8. 8.
    Chen, S.-H.: Collaborative Computational Intelligence in Economics ISRL, vol. 1, pp. 233–273 (2009)Google Scholar
  9. 9.
    Yang, G., Chen, I.-M.: Task-based Optimization of Modular Robot Configurations: Minimized Degree of Freedom Approach. Mechanism and Machine Theory 35, 517–540 (2000)MATHCrossRefGoogle Scholar
  10. 10.
    Chen, I.-M.: Rapid Response Manufacturing Through a Rapidly Reconfigurable Robotic Workcell. Robotics and Computer Integrated Manufacturing 17, 199–213 (2001)CrossRefGoogle Scholar
  11. 11.
    Kahraman, C., Gólbay, M., Kabak, O.: Applications of Fuzzy Sets in Industrial Engineering. A Topical Classification Studies in Fuzziness and Soft Computing 201, 1–55 (2009)CrossRefGoogle Scholar
  12. 12.
    Yardimci, A.: A Survey on Use of Soft Computing Methods in Medicine. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D.P. (eds.) ICANN 2007. LNCS, vol. 4669, pp. 69–79. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Gosselin, C., Angeles, J.: A Global Performance Index for the Kinematic Optimization of Robotic Manipulators. Transactions of the ASME 113, 220–226 (1991)CrossRefGoogle Scholar
  14. 14.
    Aspragathos, N., Foussias, S.: Optimal location of a robot path when considering velocity performance. Robotica 20, 139–147 (2002)CrossRefGoogle Scholar
  15. 15.
    Valsamos, H., Nektarios, T., Aspragathos, N.A.: Optimal Placement of Path Following Robot Task using Genetic Algorithms. In: SYROCO 2006 (2005)Google Scholar
  16. 16.
    Valsamos, H., Aspragathos, N.: Determination of Anatomy and Configuration of a Reconfigurable Manipulator for the Optimal Manipulability. In: ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots, London, pp. 497–503 (2009)Google Scholar
  17. 17.
    Grabisch, M.: The application of fuzzy integrals in multicriteria decision making. European Journal of Operation Research 89, 445–456 (1996)MATHCrossRefGoogle Scholar
  18. 18.
    Valsamos, H., Aspragathos, N.A.: Design of a Versatile Passive Connector for Reconfigurable Robotic Manipulators with Articulated Anatomies and their Kinematic Analysis. In: I*PROMS 2007 Virtual Conference (2007)Google Scholar
  19. 19.
    Valsamos, H., Moulianitis, V., Aspragathos, N.: A Generalized Method for Solving the Kinematics of 3 D.O.F. Reconfigurable Manipulators. In: I*PROMS 2009 Virtual Conference (2009)Google Scholar
  20. 20.
    Yoshikawa, S.: Foundation of Robotic Analysis and Control. The MIT Press, Cambridge (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Harry Valsamos
    • 1
  • Vassilis Moulianitis
    • 2
  • Nikos Aspragathos
    • 1
  1. 1.Mechanical and Aeronautics Engineering Dept.University of PatrasRio, AchaiaGreece
  2. 2.Dept. of Product and Systems Design EngineeringUniversity of AegeanErmoupolisGreece

Personalised recommendations