Vertical Fragmentation Design of Distributed Databases Considering the Nonlinear Nature of Roundtrip Response Time

  • Rodolfo A. Pazos R.
  • Graciela Vázquez A.
  • José A. Martínez F.
  • Joaquín Pérez O.
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6277)


One of the challenges of applications of distributed database (DDB) systems is the possibility of expanding through the use of the Internet, so widespread nowadays. One of the most difficult problems in DDB systems deployment is distribution design. Additionally, existing models for optimizing the data distribution design have only aimed at optimizing query transmission and processing costs overlooking the delays incurred by query transmission and processing times, which is a major concern for Internet-based systems. In this paper a mathematical programming model is presented, which describes the behavior of a DDB with vertical fragmentation and permits to optimize its design taking into account the nonlinear nature of roundtrip response time (query transmission delay, query processing delay, and response transmission delay). This model was solved using two metaheuristics: the threshold accepting algorithm (a variant of simulated annealing) and tabu search, and comparative experiments were conducted with these algorithms in order to assess their effectiveness for solving this problem.


Tabu Search Metaheuristic Algorithm Nonlinear Nature Mathematical Programming Model Server Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chakravarthy, S., Muthuraj, J., Varadarajan, R., et al.: An Objective Function for Vertically Partitioning Relations in Distributed Databases and its Analysis. Distributed and Parallel Databases 2(2), 183–207 (1994)CrossRefGoogle Scholar
  2. 2.
    Golfarelli, M., Maio, D., Rizzi, S.: Vertical Fragmentation of Views in Relational Data Warehouses. In: Proc. Settimo Convegno Nazionale Sistemi Evoluti per Basi di Dati (SEBD 1999), Villa Olmo, Italy, pp. 23–25 (1999)Google Scholar
  3. 3.
    Pérez, J., Pazos, R., Santaolaya, R., et al.: Data-Object Replication, Distribution, and Mobility in Network Environments. In: Broy, M., Zamulin, A.V. (eds.) PSI 2003. LNCS, vol. 2890, pp. 539–545. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Menon, S.: Allocating Fragments in Distributed Databases. IEEE Trans. Parallel and Distributed Systems 16(7), 577–585 (2005)CrossRefGoogle Scholar
  5. 5.
    Kleinrock, L.: Communication Nets: Stochastic Message Flow and Delay. Dover Publications, USA (2007)Google Scholar
  6. 6.
    Tamhankar, A.M., Ram, S.: Database Fragmentation and Allocation: an Integrated Methodology and Case Study. IEEE Trans. Systems, Man and Cybernetics Part A 28(3), 288–305 (1998)CrossRefGoogle Scholar
  7. 7.
    Huang, Y.F., Chen, J.H.: Fragment Allocation in Distributed Database Design. J. of Information Science and Engineering 17(3), 491–506 (2001)Google Scholar
  8. 8.
    Ulus, T., Uysal, M.: Heuristic Approach to Dynamic Data Allocation in Distributed Database Systems. Pakistan J. of Information and Technology 2(3), 231–239 (2003)Google Scholar
  9. 9.
    Basseda, R.: Fragment Allocation in Distributed Database Systems. Technical Report. Faculty of Electrical and Computer Eng., School of Engineering, Database Research Group, University of Tehran, Iran (2006)Google Scholar
  10. 10.
    Ma, H., Schewe, K.-D., Kirchberg, M.: A Heuristic Approach to Vertical Fragmentation Incorporating Query Information. In: Proc. 7th Int. Baltic Conf. on Databases and Information Systems, pp. 69–76 (2006)Google Scholar
  11. 11.
    Hababeh, I., Ramachandran, M., Bowring, N.: Application Design for Data Fragmentation and Allocation in Distributed Database Systems. In: Distributed Database Systems, Research and Practice Conference, Leeds, UK (2007)Google Scholar
  12. 12.
    Gorla, N., Wing-yan, B.P.: Vertical Fragmentation in Databases Using Data-Mining Technique. Int. J. of Data Warehousing and Mining 4(3), 35–53 (2008)Google Scholar
  13. 13.
    Tambulea, L., Horvat-Petrescu, M.: Redistributing Fragments into a Distributed Database. Int. J. of Computers, Communications & Control 3(4), 384–394 (2008)Google Scholar
  14. 14.
    Pazos, R.A., Vázquez, G., Pérez, J., Martínez, J.A.: Modeling the Nonlinear Nature of Response Time in the Vertical Fragmentation Design of Distributed Databases. Advances in Soft Computing 50, 605–612 (2009)CrossRefGoogle Scholar
  15. 15.
    Lin, X., Orlowska, M.E., Zhang, Y.: On Data Allocation with the Minimum Overall Communication Costs in Distributed Database Design. In: Proc. 5th International Conference on Computing and Information, pp. 539–544 (1993)Google Scholar
  16. 16.
    Pérez, J., Pazos, R., Velez, L., Rodríguez, G.: Automatic Generation of Control Parameters for the Threshold Accepting Algorithm. In: Coello Coello, C.A., de Albornoz, Á., Sucar, L.E., Battistutti, O.C. (eds.) MICAI 2002. LNCS (LNAI), vol. 2313, pp. 125–144. Springer, Heidelberg (2002)Google Scholar
  17. 17.
    Dueck, G., Scheuer, T.: Threshold Accepting: a General Purpose Optimization Algorithm Appearing Superior to Simulated Annealing. Journal of Computational Physics 90(1), 161–175 (1990)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Rodolfo A. Pazos R.
    • 1
  • Graciela Vázquez A.
    • 2
  • José A. Martínez F.
    • 1
  • Joaquín Pérez O.
    • 3
  1. 1.Instituto Tecnológico de Cd. Madero 
  2. 2.ESIME, Instituto Politécnico Nacional 
  3. 3.Centro Nacional de Investigación y Desarrollo Tecnológico 

Personalised recommendations