Factorizing Three-Way Binary Data with Triadic Formal Concepts

  • Radim Belohlavek
  • Vilem Vychodil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6276)

Abstract

We present a problem of factor analysis of three-way binary data. Such data is described by a 3-dimensional binary matrix I, describing a relationship between objects, attributes, and conditions. The aim is to decompose I into three binary matrices, an object-factor matrix A, an attribute-factor matrix B, and a condition-factor matrix C, with a small number of factors. The difference from the various decomposition-based methods of analysis of three-way data consists in the composition operator and the constraint on A, B, and C to be binary. We present a theoretical analysis of the decompositions and show that optimal factors for such decompositions are provided by triadic concepts developed in formal concept analysis. Moreover, we present an illustrative example, propose a greedy algorithm for computing the decompositions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belohlavek, R.: Optimal decompositions of matrices with grades. In: IEEE IS 2008, pp. 15-2–15-7 (2008)Google Scholar
  2. 2.
    Belohlavek, R.: Optimal triangular decompositions of matrices with entries from residuated lattices. Int. J. of Approximate Reasoning 50(8), 1250–1258 (2009)MATHCrossRefGoogle Scholar
  3. 3.
    Belohlavek, R., Vychodil, V.: Discovery of optimal factors in binary data via a novel method of matrix decomposition. J. Computer and System Sci. 76(1), 3–20 (2010)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Belohlavek, R., Vychodil, V.: Factor analysis of incidence data via novel decomposition of matrices. LNCS (LNAI), vol. 5548, pp. 83–97. Springer, Heidelberg (2009)Google Scholar
  5. 5.
    Cichocki, A., et al.: Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation. J. Wiley, Chichester (2009)Google Scholar
  6. 6.
    Cormen, T.H., et al.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)MATHGoogle Scholar
  7. 7.
    Frolov, A.A., et al.: Boolean factor analysis by Hopfield-like autoassociative memory. IEEE Trans. Neural Networks 18(3), 698–707 (2007)CrossRefGoogle Scholar
  8. 8.
    Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer, Berlin (1999)MATHGoogle Scholar
  9. 9.
    Jäschke, R., Hotho, A., Schmitz, C., Ganter, B., Stumme, G.: TRIAS – An Algorithm for Mining Iceberg Tri-Lattices. In: Proc. ICDM 2006, pp. 907–911 (2006)Google Scholar
  10. 10.
    Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Review 51(3), 455–500 (2009)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kuznetsov, S., Obiedkov, S.: Comparing performance of algorithms for generating concept lattices. J. Exp. Theor. Artif. Intelligence 14(2-3), 189–216 (2002)MATHCrossRefGoogle Scholar
  12. 12.
    Lee, D., Seung, H.: Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999)CrossRefGoogle Scholar
  13. 13.
    Lehmann, F., Wille, R.: A triadic approach to formal concept analysis. In: Ellis, G., Rich, W., Levinson, R., Sowa, J.F. (eds.) ICCS 1995. LNCS, vol. 954, pp. 32–43. Springer, Heidelberg (1995)Google Scholar
  14. 14.
    Miettinen, P., Mielikäinen, T., Gionis, A., Das, G., Mannila, H.: The Discrete Basis Problem. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 335–346. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Stockmeyer, L.J.: The set basis problem is NP-complete. IBM Research Report RC5431, Yorktown Heights, NY (1975)Google Scholar
  16. 16.
    Tatti, N., Mielikäinen, T., Gionis, A., Mannila, H.: What is the dimension of your binary data? In: Perner, P. (ed.) ICDM 2006. LNCS (LNAI), vol. 4065, pp. 603–612. Springer, Heidelberg (2006)Google Scholar
  17. 17.
    Wille, R.: The basic theorem of triadic concept analysis. Order 12, 149–158 (1995)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Radim Belohlavek
    • 1
  • Vilem Vychodil
    • 1
  1. 1.Dept. Computer SciencePalacky UniversityOlomoucCzech Republic

Personalised recommendations