A Normality Analysis-Based Approach to Monitor Behaviors in AAL Domains

  • D. Vallejo
  • J. Albusac
  • C. Glez-Morcillo
  • L. Jimenez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6279)


In this paper we discuss how an existing model for normality analysis of behaviors and a multi-agent architecture that gives support to such a model can be used on the Ambient Assisted Living domain. The use of this kind of models and architectures can contribute to support and help users in particular scenarios. A case study of an indoor environment in a hospital is described paying special attention to elderly people and patients.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weber, W., Rabaey, J., Aarts, E.H.L.: Ambient intelligence. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Albusac, J., Vallejo, D., Jimenez-Linares, L., Castro-Schez, J.J., Rodriguez-Benitez, L.: Intelligent Surveillance based on Normality Analysis to Detect Abnormal Behaviors. International Journal of Pattern Recognition and Artificial Intelligence 23(7), 1223–1224 (2009)CrossRefGoogle Scholar
  3. 3.
    Albusac, J., Castro-Schez, J.J., Lopez-Lopez, L.M., Vallejo, D., Jimenez, L.: A Supervised Learning Approach to Automate the Acquisition of Knowledge in Surveillance Systems. Signal Processing 89(12), 2400–2414 (2009)CrossRefGoogle Scholar
  4. 4.
    Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, J., Burgelman, J.C.: Scenarios for ambient intelligence in 2010. In: Office for Official Publications of the European Communities (2010)Google Scholar
  5. 5.
    Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: The KDD process for extracting useful knowledge from volumes of data. Communications of the ACM 39(11), 27–34 (1996)CrossRefGoogle Scholar
  6. 6.
    Foundation for Intelligent Physical Agents FIPA, FIPA Agent Management Specification (2004), http://www.fipa.org/specs/fipa00023/index.html
  7. 7.
    Henning, M.: A new approach to object-oriented middleware. IEEE Internet Computing 8(1), 66–75 (2004)CrossRefGoogle Scholar
  8. 8.
    Nehmer, J., Becker, M., Karshmer, A., Lamm, R.: Living assistance systems: an ambient intelligence approach. In: 28th International Conference on Software Engineering, pp. 43–50. ACM, New York (2006)Google Scholar
  9. 9.
    Valera, M., Velastin, S.: Intelligent distributed surveillance systems: a review. IEEE Proceedings Vision, Image and Signal Processing 152(2), 192–204 (2005)CrossRefGoogle Scholar
  10. 10.
    Vallejo, D., Albusac, J., Gonzalez-Morcillo, C., Jimenez, L.: A Service-Oriented Multi-Agent Architecture for Cognitive Surveillance. In: Klusch, M., Pěchouček, M., Polleres, A. (eds.) CIA 2008. LNCS (LNAI), vol. 5180, pp. 101–115. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Weiss, G.: Multiagent systems: a modern approach to distributed artificial intelligence. The MIT Press, Cambridge (2000)Google Scholar
  12. 12.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • D. Vallejo
    • 1
  • J. Albusac
    • 1
  • C. Glez-Morcillo
    • 1
  • L. Jimenez
    • 1
  1. 1.University of Castilla-La ManchaCiudad RealSpain

Personalised recommendations