Comparing Ontologies Using Multi-agent System and Knowledge Base

  • Anne Håkansson
  • Ronald Hartung
  • Esmiralda Moradian
  • Dan Wu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6279)

Abstract

This paper presents an approach for handling several ontologies in a domain by integrating a knowledge base in a multi-agent system. For some online facilities, like e-business, several ontologies in different languages are needed to match the users’ request. Finding the ontologies is one of the tasks, comparing and combining these ontologies is the other. The accomplishment of these tasks depends on the content in the ontologies like tags and structure but, in some cases, also language and matching techniques. Matching the contents is difficult due to differences between ontologies, often resulting from the lack of explicit and exact standards and development guidelines. This complication increases with the ontologies diverged languages. These problems are tackled by applying a multi-agent system wherein the agents, i.e., software agents and meta-agents, use the users’ request to search for ontologies and the knowledge base to compare and combine the contents of the ontologies to create an overall solution. The software agents search for ontologies; the meta-agents keep track of the software agents, ontologies and the knowledge base that reasons with the contents of the ontologies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apelkrans, M., Håkansson, A.: Information coordination using Meta-Agents in Information Logistics Processes. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds.) KES 2008, Part III. LNCS (LNAI), vol. 5179, pp. 788–798. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Bhavsari, V., Boley, H., Yang, L.: A Weighted-tree similarity algorithm for Multi-agent systems in E-Business environment (2004), http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.89.8260&rep=rep1&type=pdf
  3. 3.
    De Bruijin, J., Fensel, D., Keller, U., Lara, R.: Using the Web Service Modeling Ontology to enable Semantic eBusiness. Commnications of the ACM 48(12) (2005)Google Scholar
  4. 4.
    Flett, A., Brown, M.: Enterprise-standard ontology environments for intelligent e-business (2001), www.csd.abdn.ac.uk/~apreece/ebiweb/papers/flett.pdf
  5. 5.
    Gordijn, J., Akkermans, H.: Designing and Evaluating E-Business Models. IEEE Intelligent Systems Archive 16(4), 11–17 (2001)CrossRefGoogle Scholar
  6. 6.
    Hartung, R.L., Håkansson, A.: Using Meta-agents to Reason with Multiple Ontologies. In: Nguyen, N.T., Jo, G.-S., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2008. LNCS (LNAI), vol. 4953, pp. 261–270. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Helal, S., Wang, M., Jagatheesan, A.: Service-centric brokering in dynamic e-business agent communities. JECR, Special Issue in Intelligent Agents in E-Commerce (2001)Google Scholar
  8. 8.
    Håkansson, A.: An Approach to Event-Driven Algorithm for Intelligent Agents in Multi-agent Systems. In: Nguyen, N.T., Jo, G.-S., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2008. LNCS (LNAI), vol. 4953, pp. 411–420. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Håkansson, A., Hartung, R.L., Jung, J.J.: Using Multi-Agent System to handle information in Multilingual Ontologies. Accepted in Smart Innovation, Systems and Technologies 2010 (2010)Google Scholar
  10. 10.
    Jenz, D.: Business Process Ontologies: Speeding up Business Process Implementation (2003), http://ip-68-178-224-58.ip.secureserver.net/publications/07-03%20WP%20BP%20Ontologies%20Jenz.pdf
  11. 11.
    Jung, J., Håkansson, A., Hartung, R.L.: Indirect Alignment between Multilingual Ontologies: a Case Study of Korean and Swedish Ontologies. In: Håkansson, A., Nguyen, N.T., Hartung, R.L., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2009. LNCS, vol. 5559, pp. 233–241. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Marik, V., Pechoucek, M., Stepankova, O.: Social Knowledge in Multi-agent Systems. In: Luck, M., Mařík, V., Štěpánková, O., Trappl, R. (eds.) ACAI 2001 and EASSS 2001. LNCS (LNAI), vol. 2086, p. 211. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Purvis, M., Nowostawski, M., Oliveira, M., Cranefield, S.: Multi-agent interaction protocols of e-business. In: IAT IEEE/WIC, October 13-16, pp. 318–324 (2003)Google Scholar
  14. 14.
    Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall, Upper Saddle River (2003), ISBN 0-13-790395-2Google Scholar
  15. 15.
    Shin, H., Bo-Yeon Shim, B.: e-Business Agent Oriented Component Based Development for Business Intelligence. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds.) KES 2006. LNCS (LNAI), vol. 4252, pp. 803–811. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Wickramasinghe, L.K., Amarasiri, R., Alahakoon, L.D.: A Hybrid Intelligent Multiagent System for E-Business. Computational Intelligence 20(4), 603–623 (2004)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Wooldridge, M.: An Introduction to MultiAgent Systems. John Wiley & Sons Ltd., Chichester (2002), ISBN 0-471-49691-XGoogle Scholar
  18. 18.
    Wang, X.H., Gu, T., Zhang, D.Q., Pung, H.K.: Ontology Based Context Modeling and Reasoning using OWL. In: IEEE International Conference on Pervasive Computing and Communication (PerCom 2004), Orlando Florida, March 14-17 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Anne Håkansson
    • 1
  • Ronald Hartung
    • 2
  • Esmiralda Moradian
    • 1
  • Dan Wu
    • 1
  1. 1.Department of Communication SystemsRoyal Institute of Technology, KTH, Electrum 418KistaSweden
  2. 2.Department of Computer ScienceFranklin UniversityColumbusUSA

Personalised recommendations