Interval Filter: A Locality-Aware Alternative to Bloom Filters for Hardware Membership Queries by Interval Classification

  • Ricardo Quislant
  • Eladio Gutierrez
  • Oscar Plata
  • Emilio L. Zapata
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6283)


Bloom filters are data structures that can efficiently represent a set of elements providing operations of insertion and membership testing. Nevertheless, these filters may yield false positive results when testing for elements that have not been previously inserted. In general, higher false positive rates are expected for sets with larger cardinality with constant filter size. This paper shows that for sets where a distance metric can be defined, reducing the false positive rate is possible if elements to be inserted exhibit locality according to this metric. In this way, a hardware alternative to Bloom filters able to extract spatial locality features is proposed and analyzed.


Hash Function Bloom Filter Transactional Memory Cache Block Valid Interval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Communications of the ACM 13(7), 422–426 (1970)zbMATHCrossRefGoogle Scholar
  2. 2.
    Broder, A., Mitzenmacher, M.: Network applications of bloom filters: A survey. Internet Mathematics 1(4), 485–509 (2004)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Cao Minh, C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford Transactional Applications for Multi-Processing. In: IEEE Int’l Symp. on Workload Characterization, IISWC’08 (2008)Google Scholar
  4. 4.
    Ceze, L., Tuck, J., Torrellas, J., Cascaval, C.: Bulk disambiguation of speculative threads in multiprocessors. In: 33th Ann. Int’l. Symp. on Computer Architecture (ISCA’06), pp. 227–238 (2006)Google Scholar
  5. 5.
    Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-free data structures. In: 20th Ann. Int’l. Symp. on Computer Architecture (ISCA’93), pp. 289–300 (1993)Google Scholar
  6. 6.
    Jimeno, M., Christensen, K.J., Roginsky, A.: Two-tier bloom filter to achieve faster membership testing. Electronics Letters 44(7), 503–504 (2008)CrossRefGoogle Scholar
  7. 7.
    Magnusson, P.S., Christensson, M., Eskilson, J., Forsgren, D., Hallberg, G., Hogberg, J., Larsson, F., Moestedt, A., Werner, B., Werner, B.: Simics: A full system simulation platform. IEEE Computer 35(2), 50–58 (2002)Google Scholar
  8. 8.
    Martin, M.M.K., Sorin, D.J., Beckmann, B.M., Marty, M.R., Xu, M., Alameldeen, A.R., Moore, K.E., Hill, M.D., Wood, D.A.: Multifacet’s general execution-driven multiprocessor simulator GEMS toolset. ACM SIGARCH Comput. Archit. News 33(4), 92–99 (2005)CrossRefGoogle Scholar
  9. 9.
    Sanchez, D., Yen, L., Hill, M.D., Sankaralingam, K.: Implementing signatures for transactional memory. In: 40th Ann. IEEE/ACM Int’l Symp. on Microarchitecture (MICRO’07), pp. 123–133 (2007)Google Scholar
  10. 10.
    Thoziyoor, S., Muralimanohar, N., Ho Ahn, J., Jouppi, N.P.: CACTI 5.1. Technical Report HPL-2008-20, HP Labs (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ricardo Quislant
    • 1
  • Eladio Gutierrez
    • 1
  • Oscar Plata
    • 1
  • Emilio L. Zapata
    • 1
  1. 1.Department of Computer ArchitectureUniversity of Málaga, ETSI Informática, Campus TeatinosMálagaSpain

Personalised recommendations