Recommendation of Learning Objects Applying Collaborative Filtering and Competencies

  • Sílvio César Cazella
  • Eliseo Berni Reategui
  • Patrícia Behar
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 324)

Abstract

This paper presents a recommender system for learning objects which uses a collaborative filtering mechanism based on competencies. The model enables students to receive recommendations of learning objects automatically, according to students’ interests but also according to competencies that have to be developed. The prototype implemented was able to recommend relevant contents to students, aiming at helping them in the development of competencies. The paper also presents a couple of experiments showing that the recommender system has a good level of accuracy for the suggestions made.

Keywords

Recommender Systems Collaborative Filtering Competencies 

References

  1. 1.
    Wiley, D.A.: Learning object design and sequencing theory. Doctoral thesis, Brigham Young University (2000)Google Scholar
  2. 2.
    Zarifian, P.: La politique de la compétence et l’appel aux connaissances à partir de la stratégie d’entreprise post-fordiste. Contribuition to the Coloque of Nantes (December 13, 2002), http://www.scoplepave.org/ledico/auteurs/zarifian%20competence%201.htm (2002)
  3. 3.
    Fleury, A.C.C., Fleury, M.T.L.: Estratégias empresariais e formação de competências. Atlas, São Paulo (2000)Google Scholar
  4. 4.
    Adomavicius, G., Tuzhilin, A.: Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Transactions on Knowledge and Data Engineering 17(6), 734–749 (2005)CrossRefGoogle Scholar
  5. 5.
    Dutra, J.S.: Gestão por Competências. Editora Gente, São Paulo (2001)Google Scholar
  6. 6.
    Perrenoud, P.: Construir as competências desde a escola. Porto Alegre, Porto Alegre (1999)Google Scholar
  7. 7.
    Sarwar, B.G., Karypis, G., Konstan, J., Riedl, J.: Analysis of recommender algorithms for ecommerce. In: ACM E-Commerce Conference, Minneapolis, MN, pp. 158–167. ACM Press, New York (2000)Google Scholar
  8. 8.
    Shardanand, U., Maes, P.: Social information filtering: Algorithms for automating “word of mouth”. In: Human Factors in Computing Systems, Denver, Colorado, USA (1995)Google Scholar
  9. 9.
    Herlocker, J., Konstan, J., Terveen, L., Riedl, J.: Evaluating Collaborative Filtering Recommender Systems. ACM Transactions on Information Systems 22(1), 5–53 (2004)CrossRefGoogle Scholar
  10. 10.
    Schafer, J.B., Konstan, J., Riedl, J.: E-Commerce Recommendation Applications. Data Mining and Knowledge Discovery 5(5) (2001)Google Scholar
  11. 11.
    Cazella, S.C., Corrêa, I., Reategui, E.: Um modelo para recomendação de conteúdos baseado em filtragem Colaborativa para dispositivos móveis. Revista Novas Tecnologias na Educação 7, 12–22 (2008)Google Scholar

Copyright information

© IFIP 2010

Authors and Affiliations

  • Sílvio César Cazella
    • 1
  • Eliseo Berni Reategui
    • 2
  • Patrícia Behar
    • 2
  1. 1.Universidade do Vale do Rio dos Sinos (UNISINOS)São LeopoldoBrasil
  2. 2.Universidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations