Advertisement

Constrained Monotonic Abstraction: A CEGAR for Parameterized Verification

  • Parosh Aziz Abdulla
  • Yu-Fang Chen
  • Giorgio Delzanno
  • Frédéric Haziza
  • Chih-Duo Hong
  • Ahmed Rezine
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6269)

Abstract

In this paper, we develop a counterexample-guided abstraction refinement (CEGAR) framework for monotonic abstraction, an approach that is particularly useful in automatic verification of safety properties for parameterized systems. The main drawback of verification using monotonic abstraction is that it sometimes generates spurious counterexamples. Our CEGAR algorithm automatically extracts from each spurious counterexample a set of configurations called a “Safety Zone”and uses it to refine the abstract transition system of the next iteration. We have developed a prototype based on this idea; and our experimentation shows that the approach allows to verify many of the examples that cannot be handled by the original monotonic abstraction approach.

Keywords

Transition System Safety Zone Safety Property Reachability Analysis Cache Coherence Protocol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdulla, P.A., Bouajjani, A., Cederberg, J., Haziz, F., Rezine, A.: Monotonic abstraction for programs with dynamic memory heaps. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 341–354. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems for infinite-state systems. In: LICS 1996, pp. 313–321 (1996)Google Scholar
  3. 3.
    Abdulla, P.A., Chen, Y.-F., Delzanno, G., Haziza, F., Hong, C.-D., Rezine, A.: Constrained monotonic abstraction: a cegar for parameterized verification. Tech. report 2010-015, Uppsala University, Sweden (2010)Google Scholar
  4. 4.
    Abdulla, P.A., Delzanno, G., Rezine, A.: Parameterized verification of infinite-state processes with global conditions. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 145–157. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Abdulla, P.A., Delzanno, G., Rezine, A.: Approximated context-sensitive analysis for parameterized verification. In: FMOODS 2009/FORTE 2009, pp. 41–56 (2009)Google Scholar
  6. 6.
    Abdulla, P.A., Henda, N.B., Delzanno, G., Rezine, A.: Regular model checking without transducers (on efficient verification of parameterized systems). In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 721–736. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Abdulla, P.A., Henda, N.B., Delzanno, G., Rezine, A.: Handling parameterized systems with non-atomic global conditions. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 22–36. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Info. Comput. 127(2), 91–101 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Abdulla, P.A., Jonsson, B., Nilsson, M., d’Orso, J.: Regular model checking made simple and efficient. In: Brim, L., Jančar, P., Křetínský, M., Kucera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 116–130. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Arons, T., Pnueli, A., Ruah, S., Xu, J., Zuck, L.: Parameterized verification with automatically computed inductive assertions. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 221–234. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Bardin, S., Leroux, J., Point, G.: FAST extended release. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 63–66. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Boigelot, B., Legay, A., Wolper, P.: Iterating transducers in the large. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 223–235. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Bouajjani, A., Habermehl, P., Vojnar, T.: Abstract regular model checking. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 372–386. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Bultan, T., Yavuz-Kahveci, T.: Action language verifier. In: ASE 2001, p. 382 (2001)Google Scholar
  15. 15.
    Clarke, E., Talupur, M., Veith, H.: Environment abstraction for parameterized verification. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 126–141. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Cousot, P., Ganty, P., Raskin, J.-F.: Fixpoint-guided abstraction refinements. LNCS. Springer, Heidelberg (2007)Google Scholar
  17. 17.
    Dams, D., Lakhnech, Y., Steffen, M.: Iterating transducers. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 286–297. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors. Amer. J. Math. 35, 413–422 (1913)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Dill, D.: Timing assumptions and verification of finite-state concurrent systems. In: AVMFSS 1989, pp. 197–212 (1989)Google Scholar
  20. 20.
    Emerson, E., Namjoshi, K.: On model checking for non-deterministic infinite-state systems. In: LICS 1998, pp. 70–80 (1998)Google Scholar
  21. 21.
    Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In: LICS 1999 (1999)Google Scholar
  22. 22.
    Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! TCS 256(1-2), 63–92 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Fribourg, L., Olsén, H.: Proving safety properties of infinite state systems by compilation into Presburger arithmetic. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 213–227. Springer, Heidelberg (1997)Google Scholar
  24. 24.
    Gal Lalire, M.A., Jeannet, B.: A web interface to the interproc analyzer, http://pop-art.inrialpes.fr/interproc/interprocweb.cgi
  25. 25.
    Geeraerts, G., Raskin, J.-F., Begin, L.V.: Expand, enlarge and check... made efficient. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 394–404. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Jhala, R., McMillan, K.L.: A practical and complete approach to predicate refinement. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 459–473. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  27. 27.
    Kesten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E.: Symbolic model checking with rich assertional languages. TCS 256, 93–112 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    McMillan, K.L.: An interpolating theorem prover. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 101–121. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  29. 29.
    Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint solving for interpolation. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 346–362. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  30. 30.
    Touili, T.: Regular Model Checking using Widening Techniques. ENTCS 50(4) (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Parosh Aziz Abdulla
    • 1
  • Yu-Fang Chen
    • 2
  • Giorgio Delzanno
    • 3
  • Frédéric Haziza
    • 1
  • Chih-Duo Hong
    • 2
  • Ahmed Rezine
    • 1
  1. 1.Uppsala UniversitySweden
  2. 2.Academia SinicaTaiwan
  3. 3.Università di GenovaItaly

Personalised recommendations