Advertisement

Consistent Correlations for Parameterised Boolean Equation Systems with Applications in Correctness Proofs for Manipulations

  • Tim A. C. Willemse
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6269)

Abstract

We introduce the concept of consistent correlations for parameterised Boolean equation systems (PBESs), motivated largely by the laborious proofs of correctness required for most manipulations in this setting. Consistent correlations focus on relating the equations that occur in PBESs, rather than their solutions. For a fragment of PBESs, consistent correlations are shown to coincide with a recently introduced form of bisimulation. Finally, we show that bisimilarity on processes induces consistent correlations on PBESs encoding model checking problems. We apply our theory to two example manipulations from the literature.

Keywords

Model Check Equation System Dependency Graph Label Transition System Correctness Proof 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, T., Ploeger, B., van de Pol, J., Willemse, T.A.C.: Equivalence checking for infinite systems using parameterized Boolean equation systems. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 120–135. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    van Dam, A., Ploeger, B., Willemse, T.A.C.: Instantiation for parameterised Boolean equation systems. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigün, H. (eds.) ICTAC 2008. LNCS, vol. 5160, pp. 440–454. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Gallardo, M., Joubert, C., Merino, P.: Implementing influence analysis using parameterised Boolean equation systems. In: ISOLA. IEEE Computer Society Press, Los Alamitos (November 2006)Google Scholar
  4. 4.
    Garavel, H., Mateescu, R., Lang, F., Serwe, W.: CADP 2006: A toolbox for the construction and analysis of distributed processes. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 158–163. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  6. 6.
    Groote, J.F., Mateescu, R.: Verification of temporal properties of processes in a setting with data. In: Haeberer, A.M. (ed.) AMAST 1998. LNCS, vol. 1548, pp. 74–90. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Groote, J.F., Mathijssen, A.H.J., Reniers, M.A., Usenko, Y.S., Weerdenburg, M.J.v.: Analysis of distributed systems with mcrl2. In: Process Algebra for Parallel and Distributed Processing, pp. 99–128. Chapman Hall, Boca Raton (2009)Google Scholar
  8. 8.
    Groote, J.F., Willemse, T.A.C.: Model-checking processes with data. Sci. Comput. Program 56(3), 251–273 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Groote, J.F., Willemse, T.A.C.: Parameterised Boolean equation systems. Theor. Comput. Sci. 343(3), 332–369 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Keiren, J., Willemse, T.A.C.: Bisimulation minimisation of Boolean equation systems. In: HVC 2009. LNCS, Springer, Heidelberg (2009)Google Scholar
  11. 11.
    Mader, A.: Verification of Modal Properties Using Boolean Equation Systems. PhD thesis, Technische Universität München (1997)Google Scholar
  12. 12.
    Mateescu, R.: Vérification des propriétés temporelles des programmes parallèles. PhD thesis, Institut National Polytechnique de Grenoble (1998)Google Scholar
  13. 13.
    Mateescu, R., Thivolle, D.: A model checking language for concurrent value-passing systems. In: Cuéllar, J., Maibaum, T.S.E., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 148–164. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Orzan, S., Wesselink, J.W., Willemse, T.A.C.: Static analysis techniques for parameterised Boolean equation systems. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 230–245. Springer, Heidelberg (2009)Google Scholar
  15. 15.
    Orzan, S.M., Willemse, T.A.C.: Invariants for parameterised Boolean equation systems. Theor. Comp. Sci. 411(11-13), 1338–1371 (2010)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    van de Pol, J., Timmer, M.: State space reduction of linear processes using control flow reconstruction. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 54–68. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Zhang, D., Cleaveland, R.: Fast generic model-checking for data-based systems. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 83–97. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Tim A. C. Willemse
    • 1
  1. 1.Department of Mathematics and Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations