Advertisement

Parameterized Verification of Ad Hoc Networks

  • Giorgio Delzanno
  • Arnaud Sangnier
  • Gianluigi Zavattaro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6269)

Abstract

We study decision problems for parameterized verification of a formal model of Ad Hoc Networks with selective broadcast and spontaneous movement. The communication topology of a network is represented as a graph. Nodes represent states of individual processes. Adjacent nodes represent single-hop neighbors. Processes are finite state automata that communicate via selective broadcast messages. Reception of a broadcast is restricted to single-hop neighbors. For this model we consider verification problems that can be expressed as reachability of configurations with one node (resp. all nodes) in a certain state from an initial configuration with an arbitrary number of nodes and unknown topology. We draw a complete picture of the decidability boundaries of these problems according to different assumptions on communication graphs, namely static, mobile, and bounded path topology.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdulla, P.A., Čerāns, C., Jonsson, B., Tsay, Y.-K.: General decidability theorems for infinite-state systems. In: LICS 1996, pp. 313–321 (1996)Google Scholar
  2. 2.
    Abdulla, P.A., Čerāns, C., Jonsson, B., Tsay, Y.-K.: Algorithmic analysis of programs with well quasi-ordered domains. Inf. Comput. 160(1-2), 109–127 (2000)zbMATHCrossRefGoogle Scholar
  3. 3.
    Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Inf. Comput. 127(2), 91–101 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Delzanno, G., Sangnier, A., Zavattaro, G.: Parameterized verification of Ad Hoc Networks (Extended version). DISI-TR-10-01 (June 2010), http://www.disi.unige.it/index.php?research/techrep
  5. 5.
    Ding, G.: Subgraphs and well quasi ordering. J. of Graph Theory 16(5), 489–502 (1992)zbMATHCrossRefGoogle Scholar
  6. 6.
    Emerson, E.A., Namjoshi, K.S.: On model checking for non-deterministic infinite-state systems. In: LICS 1998, pp. 70–80 (1998)Google Scholar
  7. 7.
    Ene, C., Muntean, T.: A broadcast based calculus for Communicating Systems. In: IPDPS 2001, p. 149 (2001)Google Scholar
  8. 8.
    Esparza, J., Finkel, A., Mayr, R.: On the verification of Broadcast Protocols. In: LICS 1999, pp. 352–359 (1999)Google Scholar
  9. 9.
    Esparza, J., Nielsen, M.: Decidability issues for Petri nets - a survey. Bulletin of the EATCS 52, 245–262 (1994)zbMATHGoogle Scholar
  10. 10.
    Esparza, J.: Some applications of Petri Nets to the analysis of parameterised systems. Talk at WISP 2003 (2003)Google Scholar
  11. 11.
    Fehnker, A., van Hoesel, L., Mader, A.: Modelling and verification of the LMAC protocol for wireless sensor networks. In: Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp. 253–272. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! TCS 256(1-2), 63–92 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Godskesen, J.C.: A calculus for Mobile Ad Hoc Networks. In: Murphy, A.L., Vitek, J. (eds.) COORDINATION 2007. LNCS, vol. 4467, pp. 132–150. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Merro, M.: An observational theory for Mobile Ad Hoc Networks. Inf. Comput. 207(2), 194–208 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Meyer, R.: On boundedness in depth in the pi-calculus. In: IFIP TCS 2008, pp. 477–489 (2008)Google Scholar
  16. 16.
    Mezzetti, N., Sangiorgi, D.: Towards a calculus for wireless systems. ENTCS 158, 331–353 (2006)Google Scholar
  17. 17.
    Milner, R.: Communicating and mobile systems: the pi-calculus. Cambridge Univ. Press, Cambridge (1999)zbMATHGoogle Scholar
  18. 18.
    Minsky, M.: Computation: finite and infinite machines. Prentice Hall, Englewood Cliffs (1967)zbMATHGoogle Scholar
  19. 19.
    Prasad, K.V.S.: A Calculus of Broadcasting Systems. Sci. of Comp. Prog. 25(2-3), 285–327 (1995)CrossRefGoogle Scholar
  20. 20.
    Saksena, M., Wibling, O., Jonsson, B.: Graph grammar modeling and verification of Ad Hoc Routing Protocols. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 18–32. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Singh, A., Ramakrishnan, C.R., Smolka, S.A.: A process calculus for Mobile Ad Hoc Networks. In: Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 296–314. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Singh, A., Ramakrishnan, C.R., Smolka, S.A.: Query-Based model checking of Ad Hoc Network Protocols. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 603–661. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Wies, T., Zufferey, D., Henzinger, T.A.: Forward analysis of depth-bounded processes. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 94–108. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Giorgio Delzanno
    • 1
  • Arnaud Sangnier
    • 1
  • Gianluigi Zavattaro
    • 2
  1. 1.University of Genova 
  2. 2.University of Bologna 

Personalised recommendations