We initiate the study of multi-source extractors in the quantum world. In this setting, our goal is to extract random bits from two independent weak random sources, on which two quantum adversaries store a bounded amount of information. Our main result is a two-source extractor secure against quantum adversaries, with parameters closely matching the classical case and tight in several instances. Moreover, the extractor is secure even if the adversaries share entanglement. The construction is the Chor-Goldreich [5] two-source inner product extractor and its multi-bit variant by Dodis et al. [9]. Previously, research in this area focused on the construction of seeded extractors secure against quantum adversaries; the multi-source setting poses new challenges, among which is the presence of entanglement that could potentially break the independence of the sources.


Extractors Quantum Information 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1, 195–200 (1964)Google Scholar
  2. 2.
    Ben-Aroya, A., Ta-Shma, A.: Better short-seed extractors against quantum knowledge. CoRR abs/1004.3737 (2010)Google Scholar
  3. 3.
    Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69(20), 2881–2884 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bourgain, J.: More on the sum-product phenomenon in prime fields and its applications. IJNT 1(1), 1–32 (2005)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and probabilistic communication complexity. SIAM J. Comput. 17(2), 230–261 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Cleve, R., van Dam, W., Nielsen, M., Tapp, A.: Quantum entanglement and the communication complexity of the inner product function. In: Williams, C.P. (ed.) QCQC 1998. LNCS, vol. 1509, pp. 61–74. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    De, A., Portmann, C., Vidick, T., Renner, R.: Trevisan’s extractor in the presence of quantum side information. CoRR abs/0912.5514 (2009)Google Scholar
  8. 8.
    De, A., Vidick, T.: Near-optimal extractors against quantum storage. In: Proc. of STOC (2010) (to appear)Google Scholar
  9. 9.
    Dodis, Y., Elbaz, A., Oliveira, R., Raz, R.: Improved randomness extraction from two independent sources. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp. 334–344. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Dodis, Y., Oliveira, R.: On extracting private randomness over a public channel. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 252–263. Springer, Heidelberg (2003)Google Scholar
  11. 11.
    Fehr, S., Schaffner, C.: Randomness extraction via delta-biased masking in the presence of a quantum attacker. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 465–481. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Gavinsky, D., Kempe, J., Kerenidis, I., Raz, R., de Wolf, R.: Exponential separation for one-way quantum communication complexity, with applications to cryptography. SIAM J. Comput. 38(5), 1695–1708 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Gavinsky, D., Kempe, J., Regev, O., de Wolf, R.: Bounded-error quantum state identification and exponential separations in communication complexity. SIAM J. Comput. 39(1), 1–24 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Gavinsky, D., Kempe, J., de Wolf, R.: Strengths and weaknesses of quantum fingerprinting. In: Proc. of CCC, pp. 288–298 (2006)Google Scholar
  15. 15.
    Goldreich, O.: Three xor-lemmas - an exposition. ECCC 2(56) (1995)Google Scholar
  16. 16.
    Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way functions (extended abstracts). In: Proc. of STOC, pp. 12–24 (1989)Google Scholar
  17. 17.
    Kalai, Y.T., Li, X., Rao, A.: 2-source extractors under computational assumptions and cryptography with defective randomness. In: Proc. of FOCS, pp. 617–626 (2009)Google Scholar
  18. 18.
    Kasher, R., Kempe, J.: Two-source extractors secure against quantum adversaries. CoRR abs/1005.0512 (2009)Google Scholar
  19. 19.
    König, R., Maurer, U.M., Renner, R.: On the power of quantum memory. IEEE Trans. Inform. Theory 51(7), 2391–2401 (2005)CrossRefMathSciNetGoogle Scholar
  20. 20.
    König, R.T., Terhal, B.M.: The bounded-storage model in the presence of a quantum adversary. IEEE Trans. Inform. Theory 54(2), 749–762 (2008)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Nayak, A., Salzman, J.: Limits on the ability of quantum states to convey classical messages. Journal of the ACM 53(1), 184–206 (2006)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 1st edn. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  23. 23.
    Raz, R.: Extractors with weak random seeds. In: Proc. of STOC, pp. 11–20 (2005)Google Scholar
  24. 24.
    Renner, R.: Security of Quantum Key Distribution. Ph.D. thesis, ETH Zurich (September 2005),
  25. 25.
    Renner, R., König, R.: Universally composable privacy amplification against quantum adversaries. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 407–425. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Santha, M., Vazirani, U.V.: Generating quasi-random sequences from slightly-random sources (extended abstract). In: Proc. of FOCS, pp. 434–440 (1984)Google Scholar
  27. 27.
    Shaltiel, R.: Recent developments in explicit constructions of extractors. Bulletin of the EATCS 77, 67–95 (2002)zbMATHMathSciNetGoogle Scholar
  28. 28.
    Ta-Shma, A.: Short seed extractors against quantum storage. In: Proc. of STOC, pp. 401–408 (2009)Google Scholar
  29. 29.
    Tomamichel, M., Schaffner, C., Smith, A., Renner, R.: Leftover hashing against quantum side information. In: Proc. of ISIT (to appear, 2010) Google Scholar
  30. 30.
    Trevisan, L.: Extractors and pseudorandom generators. Journal of the ACM 48(4), 860–879 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Vazirani, U.V.: Strong communication complexity or generating quasirandom sequences form two communicating semi-random sources. Combinatorica 7(4), 375–392 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    de Wolf, R.: Personal communication (2010)Google Scholar
  33. 33.
    Yao, A.C.C.: Theory and applications of trapdoor functions (extended abstract). In: Proc. of FOCS, pp. 80–91 (1982)Google Scholar
  34. 34.
    Zuckerman, D.: General weak random sources. In: Proc. of FOCS, pp. 534–543 (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Roy Kasher
    • 1
  • Julia Kempe
    • 1
  1. 1.School of Computer ScienceTel Aviv University 

Personalised recommendations