Improved Inapproximability for Submodular Maximization

  • Per Austrin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6302)


We show that it is Unique Games-hard to approximate the maximum of a submodular function to within a factor 0.695, and that it is Unique Games-hard to approximate the maximum of a symmetric submodular function to within a factor 0.739. These results slightly improve previous results by Feige, Mirrokni and Vondrák (FOCS 2007) who showed that these problems are NP-hard to approximate to within 3/4 + ε ≈ 0.750 and 5/6 + ε ≈ 0.833, respectively.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Austrin, P.: Improved Inapproximability For Submodular Maximization. arXiv:1004.3777v1 [cs.CC] (2010)Google Scholar
  2. 2.
    Austrin, P., Mossel, E.: Approximation Resistant Predicates from Pairwise Independence. Computational Complexity 18(2), 249–271 (2009)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular functions. In: IEEE Symposium on Foundations of Computer Science (FOCS), pp. 461–471 (2007)Google Scholar
  4. 4.
    Goemans, M.X., Williamson, D.P.: Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming. Journal of the ACM 42, 1115–1145 (1995)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1(2), 169–197 (1981)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Khot, S.: On the Power of Unique 2-prover 1-round Games. In: ACM Symposium on Theory of Computing (STOC), pp. 767–775 (2002)Google Scholar
  7. 7.
    Lovász, L.: Submodular functions and convexity. In: Grötschel, M., Bachem, A., Korte, B. (eds.) Mathematical Programming: The State of the Art - Bonn 1982, pp. 235–257. Springer, Heidelberg (1983)Google Scholar
  8. 8.
    Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions–I. Mathematical Programming 14, 265–294 (1978)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Vondrák, J.: Submodular maximization by simulated annealing. Unpublished manuscriptGoogle Scholar
  10. 10.
    Vondrák, J.: Submodularity in Combinatorial Optimization. PhD thesis, Charles University (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Per Austrin
    • 1
  1. 1.Courant Institute of Mathematical SciencesNew York University 

Personalised recommendations