Advertisement

Abstract

We present the first nontrivial approximation algorithm for the bottleneck asymmetric traveling salesman problem. Given an asymmetric metric cost between n vertices, the problem is to find a Hamiltonian cycle that minimizes its bottleneck (or maximum-length edge) cost. We achieve an O(logn / loglogn) approximation performance guarantee by giving a novel algorithmic technique to shortcut Eulerian circuits while bounding the lengths of the shortcuts needed. This allows us to build on the recent result of Asadpour, Goemans, Mądry, Oveis Gharan, and Saberi to obtain this guarantee. Furthermore, we show how our technique yields stronger approximation bounds in some cases, such as the bounded orientable genus case studied by Oveis Gharan and Saberi.

Keywords

Approximation algorithms traveling salesman problem bottleneck optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Archer, A.: Inapproximability of the asymmetric facility location and k-median problems (2000), http://www2.research.att.com/~aarcher/Research/asym-hard.ps
  2. 2.
    Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k-median and facility location problems. SIAM J. Comput. 33(3), 544–562 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Asadpour, A., Goemans, M.X., Mądry, A., Oveis Gharan, S., Saberi, A.: An O(logn/loglogn)-approximation algorithm for the asymmetric traveling salesman problem. In: SODA 2010: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 379–389 (2010)Google Scholar
  4. 4.
    Chekuri, C., Vondrák, J., Zenklusen, R.: Dependent randomized rounding for matroid polytopes and applications. CoRR abs/0909.4348 (2009), http://arxiv.org/abs/0909.4348
  5. 5.
    Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Tech. Rep. 388, Graduate School of Industrial Administration, CMU (1976)Google Scholar
  6. 6.
    Chuzhoy, J., Guha, S., Halperin, E., Khanna, S., Kortsarz, G., Krauthgamer, R., Naor, J.: Asymmetric k-center is log* n-hard to approximate. J. ACM 52(4), 538–551 (2005)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Fleischner, H.: The square of every two-connected graph is Hamiltonian. Journal of Combinatorial Theory, Series B 16(1), 29–34 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Frieze, A.M., Galbiati, G., Maffioli, F.: On the worst-case performance of some algorithms for the asymmetric traveling salesman problem. Networks 12, 23–39 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1(2), 169–197 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hall, P.: On Representatives of Subsets. J. London Math. Soc. 10, 26–30 (1935)zbMATHCrossRefGoogle Scholar
  11. 11.
    Held, M., Karp, R.M.: The traveling-salesman problem and minimum spanning trees. Operations Research 18(6), 1138–1162 (1970)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. J. ACM 33(3), 533–550 (1986)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Hsu, W.L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1(3), 209–215 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.: Greedy facility location algorithms analyzed using dual fitting with factor-revealing LP. J. ACM 50(6), 795–824 (2003)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Kleinberg, J., Tardos, É.: Algorithm Design. Addison-Wesley Longman Publishing Co., Inc., Boston (2005)Google Scholar
  16. 16.
    Kleinberg, J., Williamson, D.P.: Unpublished manuscript, pp. 124–126 (1998), http://legacy.orie.cornell.edu/~dpw/cornell.ps
  17. 17.
    Lau, H.T.: Finding EPS-Graphs. Monatshefte für Mathematik 92(1), 37–40 (1981)zbMATHCrossRefGoogle Scholar
  18. 18.
    Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B. (eds.): The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley, Chichester (1985)zbMATHGoogle Scholar
  19. 19.
    Lin, J.H., Vitter, J.S.: ε-approximations with minimum packing constraint violation (extended abstract). In: STOC 1992: Proceedings of the 24th Annual ACM Symposium on Theory of Computing, pp. 771–782. ACM, New York (1992)CrossRefGoogle Scholar
  20. 20.
    Oveis Gharan, S., Saberi, A.: The asymmetric traveling salesman problem on graphs with bounded genus. CoRR abs/0909.2849 (2009), http://arxiv.org/abs/0909.2849
  21. 21.
    Panigrahy, R., Vishwanathan, S.: An O(log* n) approximation algorithm for the asymmetric p-center problem. J. Algorithms 27(2), 259–268 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Papadimitriou, C.H., Vempala, S.: On the approximability of the traveling salesman problem. Combinatorica 26(1), 101–120 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Parker, R.G., Rardin, R.L.: Guaranteed performance heuristics for the bottleneck traveling salesman problem. Operations Research Letters 2(6), 269–272 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Heidelberg (2003)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Hyung-Chan An
    • 1
  • Robert D. Kleinberg
    • 1
  • David B. Shmoys
    • 2
  1. 1.Dept. of Computer ScienceCornell UniversityIthaca
  2. 2.School of ORIE and Dept. of Computer ScienceCornell UniversityIthaca

Personalised recommendations