Semi-automatic Discovery of Web Services Driven by User Requirements

  • María Pérez
  • Ismael Sanz
  • Rafael Berlanga
  • María José Aramburu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6261)


Current research in domains such as the Life Sciences depends heavily on the integration of information coming from diverse sources, which are typically highly complex and heterogeneous, and usually require exploratory access. Web services are increasingly used as the preferred method for accessing and processing these sources. Due to the large number of available web services, the sheer complexity of the data and the frequent lack of documentation, discovering the most appropriate web service for a given task is a challenge for the user.

In this paper we propose a semi-automatic approach to assist the user in the discovery of which web services are the most appropriate to achieve her requirements. We describe the overall framework of our approach and we provide a detailed description of the techniques used in each phase of our approach. Finally, the usefulness of our approach is demonstrated through a Bioinformatics case study.


User Requirement Domain Ontology Requirement Model Requirement Elicitation Task Description 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Belhajjame, K., Goble, C., Tanoh, F., Bhagat, J., Wolstencroft, K., Stevens, R., Nzuobontane, E., McWilliam, H., Laurent, T., Lopez, R.: BioCatalogue: A Curated Web Service Registry for the Life Science Community. In: Microsoft eScience Conference (2008)Google Scholar
  2. 2.
    Burgun, A., Bodenreider, O.: Accessing and integrating data and knowledge for biomedical research. Med. Inform. Yearb. 2008, 91–101 (2008)Google Scholar
  3. 3.
    Cardoso, J., Sheth, A.P., Miller, J.A., Arnold, J., Kochut, K.: Quality of service for workflows and web service processes. Web Sem. 1(3), 281–308 (2004)Google Scholar
  4. 4.
    Stevens, R., Goble, C., Pocock, M., Li, P., Hull, D., Wolstencroft, K., Oinn, T.: Taverna: a tool for building and running workflows of services. Nucleic Acids Research 34(Web Server issue), 729–732 (2006)Google Scholar
  5. 5.
    Cochrane, G.R., Galperin, M.Y.: The 2010 Nucleic Acids Research Database Issue and online Database Collection: a community of data resources. Nucleic Acids Research 38, 1–4 (2010)CrossRefGoogle Scholar
  6. 6.
    Prez, M., Sanz, I., Berlanga, R.: Measure selection in multi-similarity xml applications. In: 3rd International Workshop on Flexible Database and Information System Technology, FlexDBIST-08 (2008)Google Scholar
  7. 7.
    Jouault, F., Kurtev, I.: Transforming models with atl. In: Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Marín, I.: Ancient origin of the Parkinson disease gene LRRK2. Journal of Molecular Evolution 64, 41–50 (2008)CrossRefGoogle Scholar
  9. 9.
    Mesiti, M., Jiménez-Ruiz, E., Sanz, I., Berlanga, R., Valentini, G., Perlasca, P., Manset, D.: Data integration issues and opportunities in biological XML data management. In: Open and Novel Issues in XML Database Applications: Future Directions and Advanced Technologies. IGI Global (2009)Google Scholar
  10. 10.
    Navas-Delgado, I., Rojano-Muñoz, M., Ramírez, S., Pérez, A.J., León, E.A., Aldana-Montes, J.F., Trelles, O.: Intelligent client for integrating bioinformatics services. Bioinformatics 22(1), 106–111 (2006)CrossRefGoogle Scholar
  11. 11.
    Anderson, N.R., Lee, E.S., Brockenbrough, J.S., Minie, M.E., Fuller, S., Brinkley, J., Tarczy-Hornoch, P.: Issues in biomedical research data management and analysis: needs and barriers. J. Am. Med. Inform. Assoc. 14(4), 478–488 (2007)CrossRefGoogle Scholar
  12. 12.
    Pérez, M., Casteleyn, S., Sanz, I., Aramburu, M.J.: Requirements gathering in a model-based approach for the design of multi-similarity systems. In: MoSE+DQS ’09: Proceeding of the First International Workshop on Model Driven Service Engineering and Data Quality and Security, pp. 45–52. ACM, New York (2009)CrossRefGoogle Scholar
  13. 13.
    Rao, J., Su, X.: A survey of automated web service composition methods. In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43–54. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Stoilos, G., Stamou, G. B., Kollias, S.D.: A string metric for ontology alignment. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 624–637. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Wolstencroft, K., Alper, P., Hull, D., Wroe, C., Lord, P.W., Stevens, R.D., Goble, C.A.: The mygrid ontology: bioinformatics service discovery. Int. J. Bioinformatics Res. Appl. 3(3), 303–325 (2007)CrossRefGoogle Scholar
  16. 16.
    Yu, E.: Modelling Strategic Relationships for Process Reenginering. PhD thesis, University of Toronto, Canada (1995)Google Scholar
  17. 17.
    Yu, E.: Towards modelling and reasoning support for early-phase requirements engineering. In: RE 1997, vol. 85, pp. 2444–2448 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • María Pérez
    • 1
  • Ismael Sanz
    • 1
  • Rafael Berlanga
    • 1
  • María José Aramburu
    • 1
  1. 1.Universitat Jaume ISpain

Personalised recommendations