Behavioral Cartography of Timed Automata

  • Étienne André
  • Laurent Fribourg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6227)

Abstract

We aim at finding a set of timing parameters for which a given timed automaton has a “good” behavior. We present here a novel approach based on the decomposition of the parametric space into behavioral tiles, i.e., sets of parameter valuations for which the behavior of the system is uniform. This gives us a behavioral cartography according to the values of the parameters. It is then straightforward to partition the space into a “good” and a “bad” subspace, according to the behavior of the tiles. We extend this method to probabilistic systems, allowing to decompose the parametric space into tiles for which the minimal (resp. maximal) probability of reaching a given location is uniform. An implementation has been made, and experiments successfully conducted.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Dill, D.L.: A theory of timed automata. TCS 126(2), 183–235 (1994)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: STOC ’93, pp. 592–601. ACM, New York (1993)CrossRefGoogle Scholar
  3. 3.
    André, É., Chatain, T., Encrenaz, E., Fribourg, L.: An inverse method for parametric timed automata. International Journal of Foundations of Computer Science 20(5), 819–836 (2009)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    André, É., Fribourg, L., Sproston, J.: An extension of the inverse method to probabilistic timed automata. In: AVoCS’09. Electronic Communications of the EASST, vol. 23 (2009)Google Scholar
  5. 5.
    André, É.: IMITATOR: A tool for synthesizing constraints on timing bounds of timed automata. In: Leucker, M., Morgan, C. (eds.) Theoretical Aspects of Computing - ICTAC 2009. LNCS, vol. 5684, pp. 336–342. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Annichini, A., Bouajjani, A., Sighireanu, M.: Trex: A tool for reachability analysis of complex systems. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 368–372. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press, Cambridge (2008)MATHGoogle Scholar
  8. 8.
    Brzozowski, J.A., Seger, C.J.: Asynchronous Circuits. Springer, Heidelberg (1995)Google Scholar
  9. 9.
    Chevallier, R., Encrenaz, E., Fribourg, L., Xu, W.: Timed verification of the generic architecture of a memory circuit using parametric timed automata. Formal Methods in System Design 34(1), 59–81 (2009)MATHCrossRefGoogle Scholar
  10. 10.
    Clarisó, R., Cortadella, J.: Verification of concurrent systems with parametric delays using octahedra. In: ACSD ’05. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  11. 11.
    Clarisó, R., Cortadella, J.: The octahedron abstract domain. Sci. Comput. Program. 64(1), 115–139 (2007)MATHCrossRefGoogle Scholar
  12. 12.
    Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Collomb–Annichini, A., Sighireanu, M.: Parameterized reachability analysis of the IEEE 1394 Root Contention Protocol using TReX. In: RT-TOOLS ’01 (2001)Google Scholar
  14. 14.
    Frehse, G., Jha, S.K., Krogh, B.H.: A counterexample-guided approach to parameter synthesis for linear hybrid automata. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 187–200. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Henzinger, T.A., Wong-Toi, H.: Using HyTech to synthesize control parameters for a steam boiler. In: Abrial, J.-R., Börger, E., Langmaack, H. (eds.) Dagstuhl Seminar 1995. LNCS, vol. 1165, Springer, Heidelberg (1996)CrossRefGoogle Scholar
  16. 16.
    Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for automatic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Holzmann, G.: Spin model checker, the: primer and reference manual. Addison-Wesley, Reading (2003)Google Scholar
  18. 18.
    Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for static analysis. In: Bouajjani, A., Maler, O. (eds.) Computer Aided Verification. LNCS, vol. 5643, pp. 661–667. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Automatic verification of real-time systems with discrete probability distributions. TCS 282, 101–150 (2002)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Kwiatkowska, M., Norman, G., Sproston, J.: Probabilistic model checking of deadline properties in the IEEE 1394 FireWire root contention protocol. Formal Aspects of Computing 14(3), 295–318 (2003)CrossRefGoogle Scholar
  21. 21.
    Kwiatkowska, M., Norman, G., Sproston, J., Wang, F.: Symbolic model checking for probabilistic timed automata. Information and Computation 205(7), 1027–1077 (2007)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. International Journal on Software Tools for Technology Transfer 1(1-2), 134–152 (1997)MATHCrossRefGoogle Scholar
  23. 23.
    Maler, O., Pnueli, A.: Timing analysis of asynchronous circuits using timed automata. In: Camurati, P.E., Eveking, H. (eds.) CHARME 1995. LNCS, vol. 987, pp. 189–205. Springer, Heidelberg (1995)Google Scholar
  24. 24.
    D’Argenio, P.R., Katoen, J.P., Ruys, T.C., Tretmans, G.J.: The bounded retransmission protocol must be on time! In: Brinksma, E. (ed.) TACAS 1997. LNCS, vol. 1217. Springer, Heidelberg (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Étienne André
    • 1
  • Laurent Fribourg
    • 1
  1. 1.LSV – ENS de Cachan & CNRSFrance

Personalised recommendations