An hp Certified Reduced Basis Method for Parametrized Parabolic Partial Differential Equations

  • Jens L. Eftang
  • Anthony T. Patera
  • Einar M. Rønquist
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 76)

Abstract

We extend previous work on a parameter multi-element hp certified reduced basis method for elliptic equations to the case of parabolic equations. A POD (in time)/Greedy (in parameter) sampling procedure is invoked both in the partitioning of the parameter domain (h-refinement) and in the construction of individual reduced basis approximation spaces for each parameter subdomain (p-refinement). The critical new issue is proper balance between additional POD modes and additional parameter values in the initial subdivision process. We present numerical results to compare the computational cost of the new approach to the standard (p-type) reduced basis method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Amsallem, J. Cortial, and C. Farhat. On-demand CFD-based aeroelastic predictions using a database of reduced-order bases and models. In: 47th AIAA Aerospace Sciences Meeting (2009)Google Scholar
  2. 2.
    B. O. Almroth, P. Stern, and F. A. Brogan. Automatic choice of global shape functions in structural analysis. AIAA J., 16, 525–528, 1978CrossRefGoogle Scholar
  3. 3.
    J. L. Eftang, A. T. Patera, and E. M. Rønquist. An hp certified reduced basis method for parametrized elliptic partial differential equations. SIAM J. Sci. Comput., accepted 2010Google Scholar
  4. 4.
    M. A. Grepl and A. T. Patera. A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. M2AN, 39, 157–181, 2005Google Scholar
  5. 5.
    B. Haasdonk and M. Ohlberger. Reduced basis method for finite volume approximations of parametrized linear evolution equations. M2AN Math. Model. Numer. Anal., 42, 277–302, 2008Google Scholar
  6. 6.
    A. K. Noor and J. M. Peters. Reduced basis technique for nonlinear analysis of structures. AIAA J., 18, 455–462, 1980CrossRefGoogle Scholar
  7. 7.
    D. J. Knezevic and A. T. Patera. A certified reduced basis method for the Fokker-Planck equation of dilute polymeric fluids: FENE dumbbells in extensional flow. SIAM J. Sci. Comput., 32(2):793–817, 2010CrossRefMathSciNetGoogle Scholar
  8. 8.
    N. C. Nguyen, G. Rozza, D. B. P. Huynh, and A. T. Patera. Reduced Basis Approximation and A Posteriori Error Estimation for Paramtrized Parabolic PDEs; Application to Real-Time Bayesian Parameter Estimation. In: Biegler, et al. Computational Methods for Large Scale Inverse Problems and Uncertainty Quantification. Wiley, London (2009)Google Scholar
  9. 9.
    G. Rozza, D. B. P. Huynh, and A. T. Patera. Reduced Basis Approximation and A Posteriori Error Estimation for Affinely Parametrized Elliptic Coercive Partial Differential Equations. Arch. Comput. Methods Eng., 15, 229–275, 2008MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2011

Authors and Affiliations

  • Jens L. Eftang
    • 1
  • Anthony T. Patera
    • 2
  • Einar M. Rønquist
    • 1
  1. 1.Department of Mathematical SciencesNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations